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SUMMARY

Depletion of essential nutrients triggers regulatory
programs that prolong cell growth and survival. Star-
vation-induced processes increase nutrient trans-
port, mobilize nutrient storage, and recycle nutrients
between cellular components. This leads to an effec-
tive increase in intracellular nutrients, which may act
as a negative feedback that downregulates the star-
vation program. To examine how cells overcome this
potential instability, we followed the transcription
response of budding yeast transferred to medium
lacking phosphate. Genes were induced in two tem-
poral waves. The first wave was stably maintained
and persisted even upon phosphate replenishment,
indicating a positive feedback loop. This commit-
ment was abolished after 2 hr with the induction of
the second expression wave, coinciding with the
reduction in cell growth rate. We show that the over-
all temporal stability of the expression response de-
pends on the sequential pattern of gene induction.
Our results emphasize the key role of gene expres-
sion dynamics in optimizing cellular adaptation.
INTRODUCTION

Cells depend on their external environment for supplying essen-

tial nutrients. When the levels of nutrients fluctuate, regulatory

mechanisms adjust protein level and function to optimize growth

and survival. Induced mechanisms include optimization of

nutrient transport, mobilization of nutrient into or out of storage,

scavenging extracellular resources for nutrients, and recycling

nutrients among cellular components. In addition tomechanisms

specifically tailored for the particular starvation, several global

processes are also regulated upon nutrient depletion, including

the induction of general stress genes, repression of ribosomal

associated genes, and modulation of the rate of biomass pro-

duction and cell division rate (Brauer et al., 2008).
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Genes involved in the starvation program have been charac-

terized in many systems, yet less attention has been given to

the dynamics by which this response is induced. This dynamics

is subject to multiple constraints; on one hand, rapid response is

beneficial as it enables correcting potential limitations before

cellular functions are disturbed. On the other hand, activating

the starvation program too early may reduce cellular fitness,

because this early induction may deplete resources that would

otherwise be allocated to alternative cellular functions. It may

be further beneficial to dynamically adjust the activated pro-

cesses based on the level of limitation: a response that is too

mild may not be sufficient to overcome the limitation, whereas

an adaptationmechanism that increases the intracellular nutrient

too rapidly may trigger a negative feedback that downregulates

its own induction. How these constraints impact the temporal

response to nutrient limitation is not well understood.

Budding yeast respond to a reduction in intracellular phos-

phate by rapidly translocating the transcription factor Pho4 to

the nucleus (Kaffman et al., 1994, 1998). Following its activation,

Pho4 directly induces the expression of target genes denoted

collectively as the Pho regulon. As part of this induction, high-af-

finity phosphate transporters are strongly expressed, whereas

activity of the low-affinity transporters is downregulated (Bun-

Ya et al., 1991; Wykoff et al., 2007). We recently reported that

when external phosphate is gradually depleted, this dual trans-

porter system prolongs the lag time from Pho4 activation until

the onset of growth limitation (Levy et al., 2011). This is because

activation of Pho4 occurs when external phosphate is depleted

to about the dissociation constant of the low-affinity trans-

porters, whereas growth limitation occurs when phosphate level

is reduced further, to concentrations comparable to the dissoci-

ation constant of the high-affinity transporters.When the lag time

between Pho4 activation and the onset of the growth limitation

(so-called preparation time) is impaired, cells delay their recov-

ery from phosphate starvation (Levy et al., 2011).

When external phosphate is abruptly depleted from the envi-

ronment, induction of the high-affinity transporters, by itself,

does not contribute to elevating intracellular phosphate. Growth

could still be prolonged, however, by other mechanisms. For

example, cells secrete phosphatases that retrieve phosphate

from substrates available in the extracellular environment
ors
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(Lenburg and O’Shea, 1996; Ogawa et al., 2000; Shnyreva et al.,

1996). Other induced genes retrieve phosphate from internal

sources, by mobilizing dedicated storage such as vacuolar

PolyP (Ogawa et al., 2000), or by dephosphorylating intracellular

substrates such as nucleotides or peptides (Donella-Deana

et al., 1993; Reddy et al., 2008; Xu et al., 2013). Indeed, cells

transferred to medium lacking phosphate continue to divide for

a couple of generations before arresting their division cycle.

Because Pho4 activation depends on the depletion of intracel-

lular phosphate, efficient action of the Pho regulon genes in

increasing intracellular phosphate could function as a negative

feedback loop to downregulate Pho4 activity, thereby inhibiting

their own expression. However, such instability has not been

reported. To better understand how cells coordinate their

response to phosphate depletion and how they ensure the stabil-

ity of this response, we followed the transcription profile of

budding yeast transferred to medium that lacks phosphate at

high temporal resolution. We found that Pho4-dependent genes

are induced in two temporal waves. The first wave introduces a

stabilizing positive feedback loop, whereas the second (which

includes the majority of extracellular and intracellular phospha-

tases) acts as an effective negative feedback. Notably, the

second induction wave coincides with the reduction in growth

rate and upregulation of the environmental stress response.

The destabilization effect of the second induction wave depends

on specific genes, which we identify. Furthermore, the temporal

stability of the expression program is abolished when eliminating

the delay in the second expression wave induction. We discuss

the implications of our results for better understanding the

means by which cells adapt to phosphate starvation.

RESULTS

Genome-wide Transcription Profiles Show a Temporal
Response to Phosphate Depletion
We characterized the genome-wide transcription profile

induced by phosphate starvation using high-throughput RNA

sequencing. Log-phase budding yeast cells were transferred

from a rich medium to a medium lacking phosphate and were

followed for 6 hr, with measurements taken every 15 min (Fig-

ure 1A). To focus on the changes in gene expression, we report

the (log) expression ratio relative to cells growing in rich medium

(Figure 1B, left).

The overall similarity between the profiles at different time

points can be quantified using the (Pearson) correlation. Sam-

ples taken during the first 2 hr were well correlated (<c> =

0.69), and an even higher correlation was observed between

samples from the later time points (<c> = 0.87). In contrast, cor-

relation between early and late samples was significantly lower

(<c> = 0.59) (Figure 1B, right).

A possible interpretation of this correlation pattern is that the

response is biphasic, with an initial change in gene expression

triggered immediately upon transfer to medium lacking phos-

phate, followed by a second wave of expression change occur-

ring about 2 hr later. Two Pho4-dependent genes, PHO84 and

PHO5, have previously been reported to be induced with

different temporal kinetics upon transfer to phosphate-lacking

medium: PHO84 is induced immediately upon transfer, whereas
Cell R
PHO5 induction followswith a delay (Thomas andO’Shea, 2005).

Our data similarly showed that PHO84was induced immediately

upon phosphate depletion, whereas PHO5 was induced later,

about 2 hr following the transfer to phosphate-lacking media

(Figures 1C and 1E).

We focused on 17 Pho regulon genes that have been shown to

be induced by limited phosphate and have a well-defined role in

phosphate homeostasis. The induction time of each gene was

defined by the first time point showing a maximal rate of expres-

sion increase (derivative). Induction times were bimodal: about

half of the genes were induced immediately upon the transfer,

showing maximal induction rate already at the first time point

examined (Figures 1C and 1E). The other genes were induced

with a delay, which was roughly 2 hr in most cases. Notably,

most of the rapidly induced genes showed a second induction

peak that was again localized around the 2 hr time point (Figures

1C and 1E). Therefore, the Pho regulon is induced in a well-

defined temporal order: some genes are induced rapidly upon

phosphate depletion, whereas other genes are induced with a

significant delay of about 2 hr.

Rapidly Induced Genes Stabilize Pho4 Activity
We asked whether the temporal order by which the Pho genes

were induced reflects functional differences between the early

and late genes. Among the rapidly induced genes were both

genes whose function increases internal phosphate levels, as

well as genes that could reduce the level of internal phosphate.

Genes that function to increase the level of internal phosphate

include the high-affinity transporter PHO84, its auxiliary factor

PHO86 (Lau et al., 2000), and the two secreted acid phospha-

tases PHO12 and PHO11, which retrieve phosphate from

external sources (Shnyreva et al., 1996). Genes that could act

to reduce the level of internal phosphate include the four

PHM1-4 genes, which direct internal phosphate into vacuolar

PolyP storage (Ogawa et al., 2000) and SPL2, which downregu-

lates the activity of low-affinity transporters (Wykoff et al., 2007).

PHO81, which also belongs to this group, promotes Pho4 activ-

ity by inhibiting the inhibitory kinase Pho85-Pho80 (O’Neill et al.,

1996; Schneider et al., 1994).

Therefore, based on their function, the rapidly induced genes

could potentially introduce either a negative or positive feedback

loop acting on Pho4 activity. Although neither of these feedbacks

is necessarily effective, our previous study suggests that the

induced genes initiate a positive feedback (Vardi et al., 2013),

because we found that cells growing at steady state in interme-

diate phosphate levels activate a positive feedback loop that

depends on the induction of the SPL2 and PHM3-4 genes. We

therefore hypothesized that, also in the present, dynamic

context, the first induction wave introduces an effective positive

feedback loop. To examine this possibility, we replenished phos-

phate to the starved cells and examined their recovery. In the

absence of a positive feedback loop, we expect an immediate

downregulation of all induced genes. In contrast, if cells activate

a positive feedback loop that stabilizes Pho4 activity, cells will

maintain the Pho4-dependent genes induced even if phosphate

is replenished and will downregulate them only upon some sto-

chastic event that may break the positive feedback loop (Vardi

et al., 2013).
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Cells were transferred to amedium lacking phosphate for vary-

ing amounts of time and were then shifted back to rich media

(Figure 1D). A yellow fluorescence reporter driven by the PHO84

promoter PHO84pr-YFP was used to follow the expression of

a rapidly induced Pho4-dependent promoter at the single-cell

level. The single-cell distribution of this reporter expression was

quantified using flow cytometry throughout the time course.

High reporter expression was observed in all cells following 1 hr

in no-phosphate media (Figure 1D). Notably, a large fraction of

the cells that were subject to phosphate starvation for 2 hr or

lessmaintained reporter expression for over 20 hr following trans-

fer back to rich medium, while undergoing at least 12 divisions

(Figure 1D). Single cells downregulated reporter expression at

stochastic times, consistent with noise-driven destabilization of

the positive feedback loop (Vardi et al., 2013). This ability tomain-

tain reporter expression in the presence of high phosphate was

lost in cells deleted of the rapidly induced genes SPL2 and

PHM3 (Figure S1). We conclude that the first wave of gene induc-

tion leads to a stabilizing positive feedback that maintains Pho4-

dependentgeneexpressionevenwhenphosphate is replenished.

The Second Wave of Pho Gene Expression Acts as a
Destabilizing Negative Feedback
In contrast to cells grown at intermediate levels of phosphate,

which maintain a stable induction of Pho4-dependent genes

when phosphate is replenished, steady-state cultures growing

at low phosphate downregulate these genes immediately upon

phosphate replenishment (Vardi et al., 2013). Consistent with

this finding, cells treated with medium lacking phosphate for

3 hr or longer downregulate PHO84pr-YFP reporter expression

immediately upon their return to rich media (Figure 1D). This

loss of stability could result from the downregulation of the pos-

itive feedback associated with the rapidly induced genes. These

genes, however, remained highly expressed throughout the time

course, and their expression in fact increased, rather than

decreased, at the 2 hr time point (Figure 1C). Alternatively, the

second wave of Pho4-dependent genes induced at about the

2 hr time point could introduce an effective negative feedback

that dominates over the earlier induced positive feedback.

Thepossibility that thedelayedgenes introduceaneffective de-

stabilizing feedback is supported by their functional association.
Figure 1. Biphasic Transcription Response to Phosphate Depletion

(A) Time resolved transcription profiling. Experimental design: log-phase cells wer

taken every 15 min. The transcription profile at each time point was defined usin

(B) Biphasic modulation of gene expression. Expression values were normalized

(Log2) expression of genes that were induced or repressed more than 3-fold duri

(Pearson) correlation between the (log2) expression changes and is shown here

taken during the first 2 hr and the high similarity between samples taken at the la

(C) Temporal induction of Pho genes. A set of 17 genes involved in phosphate hom

Shown is the (log2) expression of each of those genes relative to its expression

(D) First expression wave coincides with commitment to Pho4 activation. The st

expression is induced at low-Pi in a Pho4-dependent manner. Cells were transf

shifted back to rich medium. The distribution of single-cell reporter expression wa

reporter expression as a function of time in richmedium. Note that a large fraction o

rich medium (commitment), whereas longer exposure was followed by an immed

(E) Immediate versus delayed induction of Pho genes. The time of gene induction

maximal. Induction times are shown for the 17 Pho genes (left). Note that ten ear

induced at a delay that varies between 30min to 2 hr. Plots of genes expression an
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This group includes phosphatases that are either secreted

(PHO5) or act on cellular substrates (PHM8, PHO8, DDP1). Also

in this group,wefindPHO89, a high-affinityphosphate transporter

and PHM6, a protein of unknown function (Figure 1E). Further-

more, KCS1, an additional gene that belongs to this group, func-

tions to reduce IP7, amajor signalingmolecule implicated in Pho4

activation in response to phosphate depletion (Lee et al., 2007).

Therefore, all these genes are expected to decrease Pho4 activa-

tion either directly or by increasing intracellular phosphate and

may introduce an effective negative feedback (Figure 2A).

We reasoned that, if genes induced during the second tempo-

ral wave destabilize the starvation response, their deletion will

maintain the stabilizing effect of the initial induction wave for a

longer time. To test this, we examined cells deleted of four of

these genes, PHO5, PHM8, PHM6, and PHO8, individually or

in combination, and tested whether they maintain expression

of Pho4-dependent genes when phosphate is replenished.

Indeed, deleting both PHM8 and PHM6 (Dphm6Dphm8) pro-

longed the time in which the induction of Pho4-dependent

remained stable (Figure 2B). We also examined whether consti-

tutive expression of the second wave genes destabilizes the

response by engineering cells to constitutively express the inter-

nal phosphatase PHO8, driven by the TDH3 promoter. Indeed,

constitutive expression of PHO8 significantly reduced the frac-

tion of phosphate-starved cells, which maintained the Pho4-

dependent gene expression upon phosphate replenishment

(Figure 2B). We conclude that the second wave of Pho4-depen-

dent gene induction introduces an effective negative feedback

loop that overcomes the preceding positive feedback loop and

can destabilize Pho4 activation, at least when cells are trans-

ferred from phosphate starvation conditions to rich media.

Preventing the Temporal Delay in Pho4-Dependent
Gene Expression Results in a Transient Oscillatory
Behavior
Wild-type cells growing in medium lacking phosphate maintain a

stable induction of Pho4-dependent genes, indicating that cells

overcome the inherent negative feedback associated with phos-

phatases expression. We asked whether the delay between the

first, stabilizing wave, and the second, destabilizing wave, is

required for this stable expression.
e transferred to no-phosphatemedium andwere followed for 6 hr, with samples

g high-throughput sequencing.

by their levels prior to transfer, to capture changes in expression. Shown is the

ng the time course (left). Similarity between samples was defined based on the

for the 24 time points profiled (right). Note the high similarity between samples

ter time points.

eostasis and induced by low phosphate were assembled based on literature.

at high phosphate.

ability of Pho4 activation was tested using the PHO84pr-YFP reporter whose

erred to a medium lacking phosphate for the indicated amount of time before

s quantified using flow cytometer. Shown is the fraction of cells that maintained

f cells exposed to no-Pi media for 2 hr or lessmaintained reporter expression in

iate downregulation of reporter expression. Error bars stand for SD.

was defined as the first time point in which the rate of expression change was

ly genes are induced immediately upon the transfer, whereas seven others are

d its rate of change are shown for four representative genes, as indicated (right).
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Figure 2. Delayed Induced Internal Phos-

phatases Destabilize Pho4 Activation

(A) Putative positive and negative feedbacks

associated with induced Pho genes. A scheme

summarizing the effect of different Pho genes on

the activation of the Pho4 transcription factor.

Pho4 is activated by depletion of intracellular

phosphate. Different Pho genes function to in-

crease or decrease internal phosphate levels, as

indicated. Additional, more direct feedbacks are

defined by pathways transmitting reduced phos-

phate level to Pho4 activation. Rapidly induced

genes are marked in blue, whereas those induced

with a delay are marked in green.

(B) Commitment to Pho4 activation depends on

late-induced genes. Commitment was assayed as

described in Figure 1D for strains of the indicated

background. Note the reduction in committed

cells in a strain deleted of the two delayed genes

PHM6 and PHM8 and the increased fraction of

committed cells in a strain that constitutively

expressed the delayed gene PHO8 using

the TDH3 promoter (pho8C). Error bars stand

for SD.
To examine this, we considered mutants in which all Pho

genes are rapidly induced. Cells deleted of PHM3 or PHM4 are

devoid of stored PolyP and were previously shown to induce

PHO5 immediately upon phosphate depletion (Thomas and

O’Shea, 2005). We expected a similar rapid induction of all

Pho4-dependent genes in both mutants. We further expected

a stronger and faster activation of Pho4 in cells showing a 2-

fold reduction in the expression ofPHM3 or ofPHO85, a negative

regulator of Pho4 (Vardi et al., 2013). Indeed, repeating our time-

resolved transcription profiling with these four mutants verified

that the full Pho regulon was simultaneously induced immedi-

ately upon transfer to medium lacking phosphate (Figure 3, left).

Notably, in contrast to the stable induction of this transcription

program in wild-type cells, the rapid induction of the Pho genes

in these mutants was followed by their pronounced downregula-

tion. This downregulation was transient and was followed by a

subsequent induction (Figure 3). The timing and extent of the

downregulation varied between strains. The qualitative transient

oscillatory behavior was observed in all four cases, although
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each strain showed a different oscillation

pattern: cells in which Pho85 expression

was reduced underwent two oscillations,

whereas the other strains showed a sin-

gle oscillation. We conclude that the de-

layed expression of Pho genes is required

for maintaining their stable induction.

The Delayed Wave of Pho4-
Dependent Expression Coincides
with ESR Induction and a Reduction
in Growth Rate
Activation of Pho4 depends on the level

of intracellular phosphate (Auesukaree

et al., 2004). The two induction waves
may therefore reflect two activation thresholds, whereby the

lower threshold is defined by a sharper decrease in intracellular

phosphate or by the depletion of PolyP storage (Thomas and

O’Shea, 2005). We asked whether these thresholds can also

explain the more general stress responses induced by phos-

phate starvation.

In the budding yeast, a variety of environmental stresses

trigger a common gene expression program, termed the Envi-

ronmental Stress Response (ESR) (Causton et al., 2001; Gasch

et al., 2000). In our data as well, stress genes were upregulated,

whereas genes associated with the making of ribosomes were

downregulated (Figure 4A, top). The ESR is typically induced

rapidly, within minutes of exposure to stress (Gasch et al.,

2000). In sharp contrast, this program was only slightly induced

immediately upon phosphate depletion, but was strongly acti-

vated at about 2 hr following transfer to medium lacking phos-

phate, coinciding with the second wave of Pho gene induction

(Figure 4A, top). This delayed response was even more pro-

nounced when examining expression of genes involved in



ribosomal biogenesis (the Ribi module); here, no reduction in

expressionwas observed until 2 hr following the transfer to phos-

phate depleted medium. Rather, this group underwent a strong

and uniform decrease in expression at the 2 hr time point (Fig-

ure 4A, top).

The induction of stress genes and downregulation of Ribi

genes remained correlated with the expression of the second

wave of Pho gene in all of the mutants showing rapid and syn-

chronized induction of the full Pho regulon as well. Thus, in the

PHM3/4 mutants and in cells with reduced PHO85 expression,

the ESR was induced rapidly upon transfer to medium lacking

phosphate. Furthermore, ESR activation showed the same tran-

sient oscillatory behavior observed for the Pho genes (Figure 4A).

Because ESR activation does not depend on the Pho4 transcrip-

tion factor, this coordinated oscillatory behavior supports the

notion that the ESR is triggered by the sharp decrease in internal

phosphate, and that the negative feedback loop introduced by

the second wave genes acts by effectively increasing internal

phosphate.

Changes in the ESR gene expression program often correlate

with changes in cell growth rate (Brauer et al., 2008). We asked

whether growth rate changes at the time of ESR induction. Cells

transferred to a medium lacking phosphate underwent on

average two additional divisions before arresting their cell cycle.

Notably, average population growth was rapid during the first

2 hr and decreased only at about the 2 hr time point following

transfer, correlating with the second wave of Pho gene induction

and ESR activation (Figure 4B).

We also measured the growth rate of cells deleted of PHM3, in

which the decrease in internal phosphate is expected to be faster

due to the lack of PolyP storage. Growth rate was largely

reduced compared to wild-type cells, although cells still under-

went almost two cell divisions before arresting. Here as well, a

sharp reduction in growth rate was observed upon the transfer

to a media lacking phosphate, consistent with the immediate in-

duction of the ESR program (Figures 4A and 4B).

Pho4-Dependent Gene Induction Precedes ESR
Activation and Growth Rate Reduction in Mutants,
Showing Delayed Pho4 Activation
We therefore concluded that, in wild-type cells and in cells that

rapidly activate the full Pho regulon, the induction of the second

wave Pho gene coincides with activation of the general stress

response and a reduction in growth rate. To examine the gener-

ality of this temporal correlation, we analyzed the transcription

program of mutants showing a delayed induction of the Pho

regulon.

We first considered mutants deleted of VIP1, a gene required

for the production of inositol heptakisphosphate (IP7) (Lee et al.,

2007). Previous studies argued that IP7 is essential for Pho4

activation in low phosphate conditions and reported that cells

deleted of VIP1 do not induce Pho regulon genes within 2 hr

of phosphate depletion (Lee et al., 2007, 2008). We verified

this observation, but noted that the Pho regulon induction is

not absent yet only delayed (Figure 5A, second row). The delay

was most pronounced for the first induction wave, which was

now observed only about 2 hr following transfer to phosphate-

lacking media. The second induction wave was delayed to a
Cell R
lesser extent and the induction of most of its genes was now

observed less than half an hour after the first wave (Figure 5C).

As expected from the significantly shorter time period between

the two induction waves, commitment was lost in those cells

(Figure S2).

ESR induction was also significantly delayed in this mutant.

Notably, the induction now occurred at about 1 hr following the

second Pho induction wave (Figure 5A). Quantifying the growth

rate of this mutant, we found that the phase of rapid growth

rate was also prolonged, with a decrease in growth rate

observed simultaneously with ESR activation (Figure 5D). Thus,

the correlation between reduced growth rate and induction of

the ESR was maintained, but both were now delayed relative

to the second wave of Pho gene induction.

As a complementary approach for delaying Pho gene induc-

tion, we analyzed cells that overexpress the low-affinity trans-

porter PHO90. We reasoned that these cells will delay Pho4

activation, as they likely accumulate additional PolyP (Hürlimann

et al., 2009). This was indeed the case. Notably, also here, the

delay in induction was most pronounced for the first wave of

Pho genes and ESR genes, whereas the second wave of Pho

genes was delayed to a lesser extent. As a result, Pho induction

now preceded ESR activation and the reduction in growth rate

(Figure 5B).

The Two ExpressionWaves Contribute Differently to the
Phenotypic Cost of Pho Gene Expression
Delaying the induction of Pho4-dependent genes therefore

breaks the temporal correlation between the ESR and the sec-

ond Pho wave. The finding that the second wave of Pho expres-

sion preceded the reduction in growth rate suggested to us that

their induction may reduce growth rate to a larger extent than

expression of genes induced in the first wave. This possibility

is further supported by the functional association of the genes

induced in the second wave, some of which are internal phos-

phatases acting on cellular components such as nucleotides or

peptides (Donella-Deana et al., 1993; Reddy et al., 2008; Xu

et al., 2013). This functional association is in contrast to the first

Pho wave genes, which do not appear to interfere with internal

cellular processes.

To define the extent bywhich induction of Pho genes interferes

with other cellular processes, we forced their expression in rich

media and used a sensitive competition assay to define the

associated reduction in growth fitness. For the first Pho wave,

we capitalized on the fact that its expression is maintained for

many generations when cells are transferred back to rich media

(Figure 1D). We therefore performed a direct competition be-

tween cells subject to 2 hr phosphate starvation prior to their

return to rich media, and cells not subject to this treatment.

Notably, we could not detect growth rate differences between

the induced and uninduced cells (Figures 6A–6C). As a comple-

mentary approach, we considered a strain in which the wild-type

Pho4 allele was replaced by its constitutively partially activated

allele (Springer et al., 2003) (Figures 6B and 6C). This partially

activated strain expresses most of the first-wave genes also in

rich media (Springer et al., 2003). Here as well, we could not

detect growth rate differences between wild-type and partially

activated cells growing in rich media. We conclude that within
eports 9, 1122–1134, November 6, 2014 ª2014 The Authors 1127
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Figure 4. Delayed Activation of the Stress Response

(A) Stress-associated genes correlate with Pho regulon induction. Same as Figure 3 but for genes induced by general environmental stress (right, red curve) and

genes associated with ribosomal biogenesis (middle, blue curve).

(B) Delayed reduction in growth rate. Growth rate of cells transferred to no-phosphate medium was quantified based on the optical density (OD), as shown. Note

the decrease in growth rate 2 hr following the transfer, coinciding with the induction of the stress response. Error bars stand for SD.
the sensitivity of our competition assay (�3%), expressing the

first wave of Pho4-dependent genes does not reduce cell growth

in rich medium.

We next tested the fitness cost of fully activating the Pho reg-

ulon. To this end, we examined cells deleted of PHO80, a cyclin
Figure 3. Early Induction of Delayed Pho Genes Results in Transient D

The time-resolved transcription profiling described in Figure 1 above was repeate

left, and the average change in expression of the seven immediate (blue) or seven

lines indicate the maximal increase and decrease in expression change (see the

Cell R
that together with PHO85 inhibits Pho4. In PHO80-deleted cells,

Pho4 is fully active regardless of external phosphate levels,

meaning that it will be fully active in rich media. Cells deleted

of PHO80 showed a significant reduction in growth rate

(�15%). Notably, this growth defect was fully rescued by Pho4
ownregulation of Pho Gene Expression

d for the indicated strains. Expression of individual Pho genes is shown on the

delayed (black) genes on the right (see the Experimental Procedures). Vertical

Experimental Procedures).
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A B C

D E F

Figure 6. Fitness Cost of Activating the Phosphate Starvation Response in Rich Medium

(A–C) Partial induction of Pho genes does not reduce competitive growth in rich media. Committed cells were obtained by preincubation in medium lacking

phosphate for 2 hr (A). Those cells maintained PHO84pr-YFP reporter induced for over 15 (diploids) or ten generations (haploids, B). In the EB1264 cells, PHO4

was replaced by a partially active allele (Springer et al., 2003). Competition experiments were performed as described in Experimental Procedures.

(D and E) Full induction of Pho genes reduces competitive growth in rich media. Competitive experiments were performed as described for cells of the indicated

phenotype. Induction level of PHO84pr-YFP is measured by flow cytometry (E).

(F) Fitness cost. Fitness cost of the different strains indicated is quantified based on the curves shown in (C) and (E). Error bars stand for SD.
deletion, confirming its origin in Pho gene expression (Figures

6D–6F). We found a similarly strong growth defect when fully

activating the Pho regulon by replacing the wild-typePHO4 allele

with a constitutively fully activated allele of PHO4 (Springer et al.,

2003) (Figures 6D–6F). We conclude that sequential activation of

Pho genes is associatedwith a differential fitness cost: activation

of the first wave of comes at a low fitness cost, whereas expres-

sion of second wave genes is significantly more deleterious

when induced in rich media.

DISCUSSION

We describe a biphasic response to phosphate depletion in the

budding yeast: an initial set of genes is induced immediately

upon transfer to media lacking phosphate, whereas a second

induction wave follows about 2 hr later (Figure 7A). The initial

expression wave introduces a positive feedback loop that stabi-

lizes the response, so that cells maintain this induction pattern

stable even if phosphate is replenished. This stability is elimi-
Figure 5. Pho Regulon Induction Precedes Cellular Stress in Mutants

(A) Gene expression pattern in mutants showing delayed activation. The time-res

indicated strains. Shown is the expression of Pho genes (left), stress genes (mid

change in expression of the Protein synthesis module for the wild-type (black) D

(B) Delay induction of the stress response. Maximal change in expression was cal

in (A); black circles marking the maximal change in expression.

(C) Pho gene induction precedes stress the response. Response time of the Ph

respective mutants (Experimental Procedures).

(D) Growth rate correlates with stress response. Growth rate in medium lacking p

Cell R
nated with the induction of the second wave, which introduces

an effective negative feedback loop.

This temporal order of gene induction is the key to its stability:

when preventing the delay in induction of the second wave, the

system oscillates and transiently downregulates the induced

genes following their rapid induction. This reflects the destabiliz-

ing effects of the secondary response, and, in particular, the in-

duction of the internal phosphatases PHO8, PHM8, and PHM6,

which likely increase the available internal phosphate. The inhibi-

tion of ribosome synthesis, which also occurs during this time,

eliminates the biggest drain on phosphate from the intracellular

space and may further contribute to the negative feedback

aspect of this second wave.

The two temporally separated responses differ not only in their

effective feedback properties, but also in the extent to which

they interfere with other cellular processes. The initial phase is

rather mild; genes induced at this stage mostly retrieve phos-

phate from the external environment or from the dedicated

phosphate storage (PolyP). In contrast, the second phase is
that Delay Pho Induction

olved transcription profiling described in Figure 1 above was repeated for the

dle), and ribosome-associated genes (right). Vertical lines mark the maximal

vip1 (blue) and pho90c (gray).

culated for the stress and protein synthesis predefinedmodules. Color code as

o genes was quantified as described in Figure 1E above and is shown for the

hosphate was measured as described in Figure 4D for the indicated mutants.
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Figure 7. Steady-State Responses in Different Pi Concentrations Corresponds to Dynamic Response to Complete Pi Depletion

(A) Dynamic response to Pi depletion.When cells are transferred to amedium lacking phosphate, a subset of the Pho regulon genes are induced immediately (red

circle), together with a slight reduction in the level of the ribosomal genes. After about 2 hr, a wave of delayed Pho genes is being activated and act as a negative

feedback by releasing Pi from cellular substrates. Ribosomal genes expression is reduced about 10-fold compared to t = 0 and growth rate is reduced (deep

red circle).

(B) Steady-state activation of the phosphate starvation response different Pi concentrations. The Pho regulon is induced as part of the starvation program when

extracellular phosphate levels decrease to below the dissociation constant of the low-affinity transporter �Kd (�220 mM). This induction increases phosphate

uptake back to its maximal velocity due to the increased expression of the high-affinity transporter Pho84 (blue circle to red circle). A positive feedback is

therefore required to stabilize the starvation program in this regime. As Pi level drops further, the flux through the high-affinity transporters is decreasing and

below the low-affinity transporters Kd (�220 mM), and a secondary response is being activated, destabilizing the positive feedback and growth is limited (deep

red circle).

(legend continued on next page)
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more severe and includes also intracellular phosphatases that

recycle phosphate from cellular components that may interfere

with other cellular functions (Donella-Deana et al., 1993; Reddy

et al., 2008; Xu et al., 2013). The separation between the two

programs allows gradual adaptation to phosphate depletion:

activation of a milder response may be sufficient under certain

conditions (e.g., when some phosphate can still be retrieved

from the media), whereas the more severe approach with its

associated consequences is activated only if this initial program

is not sufficient.

During the first 2 hr of starvation, replenishing phosphate does

not downregulate Pho gene expression (Figure 7A). We previ-

ously described a similar commitment in steady-state contin-

uous culture growing in medium with intermediate phosphate

levels (Figure 7B) (Vardi et al., 2013). We suggest that in both

cases, commitment results from the same feedback loop

and, in particular, from the induction of the proteins Pho81 and

Spl2; in the case of intermediate phosphate, the first induction

wave retrieves internal phosphate to sufficient levels, alleviating

the induction of the second, destabilizing wave. This destabiliz-

ing response is induced when steady-state cells grow in lower

phosphate, conditions in which commitment is lost. Consistent

with this hypothesis, we observe that transferring cells from

low to intermediate phosphate results in the transient exit of

Pho4 from the nucleus, prior to its re-entry (Figure 7C). This tran-

sient inactivation, in conditions where Pho4 is typically active, is

a strong indication of the destabilizing effects introduced by the

second wave genes.

More generally, correction mechanisms activated by cells

to overcome limitations in nutrients or other factors have an

inherent destabilizing effect: by reducing an intracellular limita-

tion they counteract the process that led to their induction in

the first place. This may be beneficial in some cases, when the

limitation is transient. However, maintaining stable expression

may be advantageous when cells are faced with a continuous

limitation. The temporal strategy we describe here, whereby a

stabilizing, mild response precedes the induction of a more se-

vere destabilizing program, presents one strategy for ensuring

a stable response under such conditions (Figure 7D).

EXPERIMENTAL PROCEDURES

Strains and Media

Strains were grown in synthetic complete (SC) medium, except of phosphate

in the form of KH2PO4 that was added separately in different concentrations

as described in the main text. The level of potassium was preserved by adding

KCl instead of KH2PO4 in proper amount. The media pH was set to 5. Media

for chemostat experiments included also 500 ml/l of antifoam (Sigma-Aldrich

A5758).

All yeast strains used in this study were constructed on a BY4741 back-

ground (MATa his3-D1 leu2-D0 met15-D0 ura3-D0) using standard genetic

methods and are listed in Table S1. All strains were validated by PCR and

sequencing of the relevant fragments. For a full list of strains, see the Supple-

mental Information.
(C) Transient deactivation of the Pho regulon upon switching from no Pi to interme

imaging device. Nuclear localization of Pho4-GFP reporter before, during, and a

(D) Two models to the activation of a starvation response. In the simple model, the

feedback on the response (left). A second model suggests that a positive feedba

correction mechanism is being activated (right).

Cell R
Flow Cytometry

FACS analysis of PHO84pr-YFP was done by BD LSRII system (BD Biosci-

ences). Flow cytometry was conductedwith excitation at 488 nm and emission

at 525 ± 25 nm for GFP samples. For mCherry markers excitation was con-

ducted at 594 nm and emission at 610 ± 10 nm.

RNA Extraction and Sequencing

Samples were frozen in liquid nitrogen and RNA was extracted using Nucleo-

spin 96 RNA kit Cells lysis was done in a 96-well plate by adding 450 ml of lysis

buffer containing 1 M sorbitol (Sigma-Aldrich), 100 mM EDTA, and 0.45 ml lyti-

case (10 IU/ml). The plate was incubated in 30�C of 30 s in order to break the

cell wall and then centrifuged for 10 s at 2,500 rpm, and the soup was trans-

ferred to a new 96-well plate, that provided by the Nucleospin 96 RNA kit.

From that stage on, the extraction continued using this kit. From RNA extracts,

cDNA was made for each sample. The cDNA of each samples were run in the

Illumina highsec 2500.

RNA Sequencing Analysis

RNA reads were aligned to the yeast strain S288C R64 reference genome with

BOWTIE. Number of reads for each gene was normalized by the total number

of reads and multiplied by 106. Genes that obtained below ten reads were

discarded from the analysis. After alignment to the genome read number per

sample was calculated samples that had less than 5 3 105 reads were dis-

carded from the analysis in order to prevent an artificial enrichment for highly

expressed genes. The expression at those time points was calculated as the

mean between the two closest time points in the time course.

Calculation of Response Times for Different Genes

RNA expression data were smoothed with MATLAB cubic smoothing spline.

Derivative was calculated at each point of the smoothed function, and the

response timewas taken as the first local maxima of the derivative (peak height

>2). If the derivative at the first time point was higher than two, response time

for those genes was determined as the first point in the time course.

Quantifying Oscillations of the Pho Regulon Genes

Pho regulon genes were divided in to two groups based on the response

time calculated previously. Mean expression dynamics was smoothed using

MATLAB cubic smoothing spline, and local minimums and maximums were

calculated for the smoothed function. An oscillatory behavior was defined if

expression fold change at local minima was above 10% compared to the local

maximums surrounding it.

Calculation Induction Time of Expression Modules

Mean fold change was calculated for the genes in eachmodule during the time

course. The data were smoothed as described previously, and the maximal

change in expression was defined as the induction time of the module.

Growth Rate

Cells were grown in high Pi to optical density (OD) =�0.1 and thenwashed and

transferred to no Pi medium. OD measurements were taken every 15 min.

Growth rates and the time of switch between them were quantified by fitting

the data to two exponential curves. Two repeats and the fit to one of the re-

peats are shown. Fit parameters are shown in Table S2.

Competition Assays

Cells were grown to logarithmic phase in SCmedium (OD�0.5) and washed in

the relevant medium. Wild-type (WT) Reference (haploid and diploidB) andWT

mCherry (haploid and diploid) strains were coincubated in the specified media

in 30�C. The WT-mCherry initial frequency was �50%. Generation times

were calculated from the measured OD: number of generations = log2(final
diate Pi. Logarithmic grown cells were washed grown in a CellASICmicrofluidic

fter a shift from medium lacking phosphate to 100 mM Pi medium.

starvation signal activates a correction mechanism that may act as a negative

ck is first induced by the starvation response, and, only after a delay of t, the
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OD / initial OD). The relative frequencies of WT-mCherry and WT-Reference

were measured by flow cytometry. The design of the cells dilution timescales

was set from the cells growth rate in the specified condition, and the desired

final OD. Specifically, cells were diluted once a day (Dpho80, Dpho80Dpho4,

EB1264, and EB1265 experiments) in order to reach a stationary phase, or

twice a day (WT-induced versus WT uninduced experiment) in order to main-

tain cells in logarithmic phase. A linear fit for the logarithm of the WT frequency

dynamics was used to calculate the slope for each competition assay. The

relative WT fitness advantage is calculated from the slope divided by log(2).

As a control, competition assays were done between similar strains express-

ing (WT-mCherry) and not expressing (WT-reference) a fluorescence marker,

and no fitness advantage was detected. The control was repeated in different

phosphate concentrations.

Microscopy

Cells were grown in high Pi medium over night to log phase, after which they

were washed and suspended in medium lacking phosphate for 3 hr. Cells

were transferred to a Cellasic microfluidics device (YC4D plates, http://www.

cellasic.com) and grown in medium lacking phosphate for additional 3 hr,

before medium was shifted to 100 mM Pi medium. Cells were followed with

an Olympus IX-81-ZDC inverted microscope with a motorized stage and auto-

focusability and imageswere takenusingevery 7min Imagesetswere acquired

with a Hamamatsu ORCA-II-BT camera using a plan-apo 603 air objective.
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RNA sequencing data have been deposited to the NCBI Gene Expression

Omnibus and are available under accession number GSE61668.
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