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SUMMARY
DNA binding domains (DBDs) of transcription factors (TFs) recognize DNA sequence motifs that are highly
abundant in genomes. Within cells, TFs bind a subset of motif-containing sites as directed by either their
DBDs or DBD-external (nonDBD) sequences. To define the relative roles of DBDs and nonDBDs in directing
binding preferences, we compared the genome-wide binding of 48 (�30%) budding yeast TFs with their
DBD-only, nonDBD-truncated, and nonDBD-only mutants. With a few exceptions, binding locations differed
between DBDs and TFs, resulting from the cumulative action of multiple determinants mapped mostly to
disordered nonDBD regions. Furthermore, TFs’ preferences for promoters of the fuzzy nucleosome architec-
ture were lost in DBD-only mutants, whose binding spread across promoters, implicating nonDBDs’ prefer-
ences in this hallmark of budding yeast regulatory design. We conclude that DBDs and nonDBDs employ
complementary DNA-targeting strategies, whose balance defines TF binding specificity along genomes.
INTRODUCTION

Transcription factors (TFs) regulate gene expression by recruit-

ing the general transcription machinery to particular genes.1

For this, TFs bind to specific regulatory regions of their target

genes. DNA binding domains (DBDs) within TFs recognize

DNA sequence motifs located in target regulatory sites. Howev-

er, DBD-preferred motifs are short and highly abundant in

eukaryotic genomes, including many locations with no apparent

regulatory roles.2–5 Accordingly, only a minority of motif sites are

TF-bound. The challenge of TF binding specificity therefore

extends beyond detecting DBD-preferred motifs but requires

distinguishing the relevant motif occurrences to which TFs

should bind.6–10

Binding specificity may result from differences in DNA acces-

sibility that impede binding at e.g., nucleosome occupied sites.

Other prevailing models include DBD preferences that extend

beyond known motifs to include flanking DNA sequences or

DNA shape, as well as models of combinatorial motif usage by

interacting TFs. Although each of those mechanisms is sup-

ported by specific examples, at the genomic scale, the basis

of specificity remains elusive.6–11

Focusing on TFs themselves, binding specificity could emerge

solely from the DBD or could depend on determinants within the

nonDBD. Supporting the former are seminal studies showing

that DBDs can activate reporter gene expression when fused
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to various activation domains,12–15 as well as successful designs

of synthetic DBDs targeting particular genomic loci.16 From an

evolutionary perspective, several studies linked differential pref-

erences of TF paralogs to variations in their DBD’s se-

quences.17–20 By contrast, the abundance of TFs with similar

binding locations,21,22 as well as DBD swapping between

distant23 or close24 paralogs, points at nonDBDs as main effec-

tors of binding preferences. Therefore, both the DBDs and the

nonDBDs contribute to binding-site selection, but their relative

contributions remain unclear.

Distinguishing the contribution of DBDs to TF binding speci-

ficity requiresmeasuring their genomic binding upon the removal

of respective nonDBDs. Recently, we examined this for two

budding yeast DBDs23 using chromatin enogenous cleavage

with high-throughput sequencing (ChEC-seq) which provides

high-resolution mapping independent of antibodies or fixation.25

This mapping, coupled with subsequent TF truncation analyses,

pointed at the nonDBD as the key in directing promoter pre-

ferences of those two TFs and further revealed multiple weak

and partially redundant specificity determinants distributed

throughout these long (>500 residues) and largely disordered

regions.23

The distribution of specificity determinants within disordered

nonDBDs, and their combined action in directing TF binding,

present a new paradigm for the TF-target search. To examine

the generality of this paradigm among TFs, we examined here
.
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48 (�30%) budding yeast TFs, spanning all main DBD families

and including the majority of well-characterized, non-essential

TFs. We compared the binding profiles of full TFs with their

various mutants, including DBD-only, nonDBD truncations, and

nonDBD-only mutants. Our data revealed that the majority of

nonDBDs contained multiple specificity determinants that

cumulatively direct TF binding across the genome. Of note,

those determinants are often redundant and localize mostly to

intrinsically disordered regions (IDRs). We describe the conse-

quence of these determinants on the global organization of the

yeast transcription network and discuss the distinct strategies

characterizing the specificity-guiding functions of DBDs and

IDR-enriched nonDBDs.
RESULTS

Comparing genomic binding profiles of full TFs to their
DBD-only mutants
Models explaining TF binding preferences differ in whether the

DBD alone accounts for the in-vivo TF binding locations or

whether DBD-external regions (nonDBDs) are required. As a first

step in dissecting the prevailing basis of specificity, wewished to

compare systematically the binding profiles of TFs (full protein)

with their corresponding DBD-only mutants. Budding yeast pro-

vides the advantage of a compact and well-annotated genome.

Of its 147 TFs with well-defined DBDs, 102 belong to conserved

eukaryotic families, whereas the remaining ones are of the

fungal-specific zinc cluster family (Figures 1A–1C; Table S1).

Most nonDBDs are highly disordered, consistent with the

characteristic enrichment of IDRs within eukaryotic TFs26–29

(Figure 1D). The fungal-specific zinc cluster family is unique in

containing a long structured domain (Figures 1B and 1D).

We selected 48 TFs including the majority of well-character-

ized, non-essential TFs (Figures 1A–1D). DBD-only mutants

were generated using CRISPR, and their genomic binding was

mapped using ChEC-seq (Figure 1E). For technical reasons,

and to account for permissive DBD definitions, we typically re-

tained sequences with varying lengths surrounding the anno-

tated DBDs (Figure 1F; Table S2). For centrally located DBDs,

we performed two truncations (from either end) and in some
Figure 1. In-vivo binding of DNA binding domains

(A–C) Transcription factor (TF) repertoire of budding yeast: TFs were ordered by si

(blue) nonDBD are shown, distinguishing TFs of eukaryotic-conserved families (A

families is shown as a pie chart (C). TFs selected for our analysis are highlighted a

described regions.

(D) TFs contain high disordered content: shown is a comparison of the numbers o

vs. structured regions (x axis). Selected TFs for analysis and those of the zinc clu

(E) Experimental approach: to understand the role of DBDs in guiding binding spe

mutants.

(F) DBD-mutants: plot shows DBD-mutants generated in our study, ordered by TF

light and dark purple, respectively. For TFs with an alternative second-side trunc

(G–I) DBD-mutants bind at reproducible genomic locations: shown is the binding

as well as a comparison of all promoter preferences obtained in the repeated pro

preference correlations (Pearson’s r) (I) compare reproducibility of biological rep

(J) TF and DBD mutants bind preferentially at sites containing their known bindin

matching the in-vitro motif were selected. Shown is the enrichment of reads aro

(log2, see STAR Methods). The dashed line indicates the point of 2-fold enrichm
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included the two-sided ones. For simplicity, we still denote all

mutants as DBDs.

Previous studies used isolated DBDs for quantifying DNA

binding through in-vitro biochemical or structural analysis.

Accordingly, we expected the DBD mutants to bind genomic

DNA with sufficient affinity to allow profiling. This was indeed

the case for the majority of DBDs, with only 6 (of 48) exceptions,

including 4 of the 7 fungal-specific zinc cluster DBDs tested (Fig-

ure 1F). DBDs’ binding profiles were of similar quality as full-

length TFs, showing high reproducibility (Figures 1G–1I and S1)

and the expected localization at their known motifs (Figure 1J).

We conclude that the DBDs can bind genomic DNA at sites con-

taining their motifs, even in the absence of nonDBD sequences.

DBDs’ binding-site preferences differ from those of
full TFs
Two of the prevailing models predict that DBDs are sufficient for

recapitulating the TF binding profiles. Those models attribute

binding specificity to differential DNA accessibility or to the

recognition of motif-flanking DNA sequences or DNA shape by

the DBD itself. Our data allow testing this prediction of DBD suf-

ficiency by comparing binding profiles of DBDswith their respec-

tive full-length TFs.

First, we considered genomic sites containing the known

DBD-preferred in-vitro motifs4 (Figures 2A–2D). As shown

above, these motifs are enriched in the respective DBD- and

TF-bound sites (cf. Figure 1J), and we observed that the relative

binding signal at these sites wasmostly higher for DBDs than the

respective TFs (Figures 2A and 2B). Furthermore, a larger

fraction of motif-containing sites was bound by DBDs when

compared with full-length TFs (Figures 2C and 2D).

Focusing next on regulatory regions, we compared promoters

bound byDBDs and respective TFs (Figures 2E and 2F). Only 4 of

the 42 DBDs showed a greater than 80% correlation (Pearson’s

r) with their respective TFs, including AZF1, whose DBD uniquely

contains four C2H2 zinc fingers, and TYE7, a glycolysis-regu-

lating TF with a dimer-forming bHLH DBD (Figure 2E). More

generally, the similarity of DBD-TF pairs was low, with 32/42

showing less than 75% and 19/39 showing less than 50% corre-

lation, and they also differed in the number of bound targets

(Figures 2E and 2F). Exemplifying these low similarities are
ze, and the lengths of their DBD (green) as well structured (gray) and disordered

) and the fungal-specific zinc cluster family (B). The distribution of TFs among

s purple dots (A and B) or as dark region (C). See Table S1 for full list of TFs and

f nonDBD residues located within intrinsically disordered regions (IDRs) (y axis)

ster family are indicated.

cificity, we compared the genome-wide binding profiles of TFs with their DBD

lengths. DBD defined by Pfam, and engineered DBD-mutants are indicated as

ation, the less effective mutant is marked by dark brown.

signal of the indicated TF and DBD-mutants along the indicated promoters (G),

filing of the indicated factors (H, see STAR Methods). Distributions of promoter

eats (green) with correlation between different factors (yellow).

g motif: DBD-binding motifs were obtained from CIS-BP, and the top 7-mers

und occurrences of these 7-mers compared with a random promoter region

ent.
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Figure 2. DBDs binding differs from their respective TFs

(A and B) Motif-selection bias is higher for DBDs than their respective TFs: for each 7-mer, the average binding signal found across all promoter occurrences was

measured, and compared betweenDBDs and respective TFs, as indicated (A). Highlighted dot corresponds to the strongest-bound 7-mer (top 7-mer) compatible

with known binding motif. Binding signal at this known motif was then compared between DBD and respective TFs of all factors in our set (B).

(legend continued on next page)
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cell-cycle TFs (Figure 2G), as well as stress-related activators or

repressors (Figure S2).

Given the enrichment of disordered regions within nonDBDs,

and the fact that specific DBD-DNA binding involves structure-

based complementarities, we asked whether IDR content corre-

lates with DBD-TF similarity. We observed an inverse correlation:

nonDBDs with higher disordered content had a stronger influ-

ence on binding specificity, when compared with those with

lower disorder content (c = 0.35) (Figure 2H).

Multiple nonDBD regions contribute to TF binding
specificity
The limited similarity between promoter preferences of DBDs

and full TFs implicates nonDBDs as central effectors of TF bind-

ing specificity. This raised our interest in two principal questions.

First, is it a single region within the nonDBD that determines TF

binding locations, or do multiple specificity determinants spread

across the nonDBD sequence? Second, do specificity determi-

nants within the nonDBD localize to structured regions, or are

they found within IDRs? We note that a localized or structured

determinant indicates a lock-and-key type recognition, whereas

a multiplicity of unstructured determinants is more consistent

with fuzzy interactions.

To map specificity determinants outside the DBDs, we

sequentially shortened the nonDBDs of our tested TFs (Fig-

ure 3A). We aimed for a 50AA resolution and achieved this to

various degrees, obtaining�2–15 successful mutants for 38 pro-

filed TFs. To examine how promoter preferences evolve across

the truncation series, we profiled the binding of those mutants,

and measured their correlations (Pearson’s r) with the respective

DBDs and full TFs, positioning eachmutant within amutant-DBD

vs. mutant-TF correlation plot (Figures 3A–3D; missing data indi-

cated by gray points positioned at interpolated position). Mutant

dynamics within this plot distinguished patterns of specificity de-

terminants (Figure 3A): if a single, localized region confers spec-

ificity, initial truncations would all display TF-like binding and

cluster on one side of the plot, whereas later ones, deleted of

the specificity-causing region, would all show a DBD-like pattern

and cluster at the second extreme. By contrast, if multiple

nonDBD regions contribute cumulatively and equally, mutants

would spread evenly along a line connecting DBD-TF.

In all truncation series, mutant locations defined a TF-DBD

connecting line (Figures 3B–3D for one-sided and two-sided

truncations, respectively). Furthermore, the mutant location

was largely monotonic, with subsequent truncations shifting
(C and D) DBDs binds a larger number of motif-containing sites: for each TF and i

the respective motifs. The respective distributions of those values (log2 normaliz

threshold. This threshold was used to calculate the fraction of sites bound by ea

number of analyzed sites).

(E–G) Promoter preferences differ between DBDs and their respective TFs: depict

(blue, green, and yellow; E, left, see Table S5), and the correlations (Pearson’s r

values are summarized as cumulative distribution (F), and compared with correlat

of cell-cycle TFs and DBDs for their target promoters are also shown (G), with each

see STARMethods). Top 60 promoters bound by each DBD-TF pair were included

TFs (e.g., SWI5-ACE2), while DBDs of TFs acting as a complex lose their respec

(H) IDR content correlates with low DBD-TF similarity: shown is the nonDBD effec

Pearson’s r) as a function of the number of disorder-classified residues within th

number of structured residues in the truncated regions. The 10 fungal-specific zin
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the pattern away from the TF and toward the DBD. In some

cases, the spread was rather even, indicating a similar contribu-

tion of different truncations (e.g., MOT3 and SWI5), whereas in

other cases one or few truncations dominated (e.g., SKN7).

Examining the associated promoters verified that this gradual

change in correlation captured the behavior of individual pro-

moters, with increasing truncations leading to gradual loss of

binding signal at TF-preferred promoters and gradual increase

at DBD-preferred promoters (Figure 3B).

We used the incremental shift in mutant positioning in the

mutant-DBD vs. mutant-TF correlation plot as a measure of the

specificity effect of the additionally deleted region. Based on

these measures, we quantified the distribution of truncation ef-

fects, defining a ‘‘graduality’’ score as the ratio of the median

to the maximal effect: a graduality score of 1 corresponds to a

truncation series where most truncations contribute equally,

whereas zero is obtained when the majority of truncations are

without effect (Figure 3E; see STAR Methods). As can be appre-

ciated, most TFs followed the gradual design, and this was most

apparent within our high-resolution series, including ACE2,

CRZ1, and BAS1. Exceptions, in which few truncations domi-

nate, include AZF1 that shows little dependence on its nonDBD

(cf. Figure 2E). We note that for some series, we lack the resolu-

tion to decide confidently whether specificity is evenly distrib-

uted or not (e.g., SKN7). However, even in those cases, the

cumulative effect of different truncations suggests the existence

of multiple specificity determinants.

We reasoned that in cases of redundancy, our sequential trun-

cations may underestimate the spread of determinants, as early

truncations which carry redundant determinants will show no ef-

fect, whereas later ones will show the combined effect of

removing the combination of redundant determinants. This

was the case in our previous study of MSN2 and YAP123 and

can be seen also in cases of two-sided truncations here, which

were more effective than expected from the sum of the one-

sided truncations (Figure 3D). To examine this, we engineered

an additional set of 12 mutants of 7 TFs, in which we removed i-

nternal nonDBD segments of 100 residues each, corresponding

to locations showing large effects on binding preference in the

truncation series (Figure 3F). Of the 12 segments removed,

four had no (or limited) effect and in an additional four, the effect

was lower than within the truncation series, indicating partial

redundancy. A notable exception was ACE2 whose two mid-

nonDBD truncations led to a considerable shift in binding pattern

(Figure 3F). We conclude that in the majority of TFs tested,
ts respective DBD, we measured the binding signal around each occurrence of

ed) are exemplified for SKO1 (C), with shaded regions indicating 3% binding

ch mutant, which is compared across all DBD-TF pairs in (D, see Table S4 for

ed in (E) are the number of targets that are TF-unique, DBD-unique or common

) of promoter preferences between each TF and its DBD (E, right). Correlation

ions between biological repeats and random pairs. As an example, preferences

line being a promoter, color-coded by preference of the indicated factor (rows,

. Note that paralog DBDs becomemore similar, compared with the respective

tive TFs’ similarity (MBP1-SWI4).

t (1�CDBD:TF where CDBD:TF denotes DBD-TF promoter preference correlation,

e deleted region. Each dot corresponds to a DBD-TF pair, color-coded by the

c cluster TFs, carrying a characteristic long structured domain, were excluded.
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nonDBDs contain multiple, partially redundant specificity deter-

minants that direct TF binding specificity through their cumula-

tive action.

Finally, we asked whether specificity determinants localize

more often to IDRs or structured regions (Figure 3G). Examining

first the three zinc cluster TFs whose DBDs were insufficient for

binding, we noted that the loss of binding signal occurred once

truncations entered the structured domain characterizing this

TF family (not shown). By contrast, for DBDs that displayed reli-

able, but distinct binding preferences, specificity determinants

commonly localized to IDRs (Figure 3G). We conclude that

nonDBDs direct binding through multiple specificity determi-

nants, many of which are found within IDRs.

NonDBDs direct TF binding toward promoters of fuzzy
nucleosome architectures
Going beyond individual TFs, we asked whether, and how,

nonDBDs impact the gene regulatory network design. A hallmark

of budding yeast transcription is the splitting of genes into two

classes: aminority whose promoters bind specific TFs and ama-

jority that shows little TF binding.30,31 Of note, the nucleosome

architecture is a defining property of these classes32–35: pro-

moters whose TSS-proximal nucleosome is occupied (OPN-

type) show flexible expression and bind multiple TFs, whereas

promoters depleted of proximal nucleosomes (‘‘DPN-type’’)

are often unbound and drive stable expression.32–35

Full-length TFs in our dataset localized to promoters of high

OPN score, as expected from previous data30 (Figure 4A). In

sharp contrast, DBDs’ binding spreads across promoters,

largely independent of the OPN score (Figure 4A). Therefore,

the prominent preference of TFs for binding OPN promoters is

not the mere consequence of differential DNA accessibility or

motif occurrences but depends on determinants within the

nonDBDs.

To examine more directly binding preferences of nonDBDs,

we mapped binding profiles of DBD-deleted TF mutants (Fig-

ure 4B). In this, we were motivated by our previous studies
Figure 3. Multiple specificity determinants spread within intrinsically d

(A) Defining patterns of specificity determinant within nonDBDs—a scheme: TF s

truncated mutants were profiled (left). Promoter preferences of truncation-mutan

scenarios of localized vs. distributed specificity determinants. Simulated correla

between the truncations and the DBD or the TF in both cases. Here, dots are colore

correlation (Pearson’s r), and black circles highlight DBD and TF.

(B) Binding preferences of exemplary nonDBD truncation-mutants: distribution of

promoter preferences at the center figure, where each row is a DBD or TF targe

Predicted structure and disorder content are shown on the left, and the positioni

shown on the right, as in (A). Gray dots indicate interpolated locations of missing

promoters, coupled to increased binding to DBD-bound ones.

(C–E) NonDBD truncations shift binding preferences from TF to DBD-like: correlat

TFswith tight (>4) truncation series and lowDBD-TF similarities (<0.5 DBD-TF corr

more effective series. Asterisk indicates cases where combined truncations wer

effect, summarizes truncation effects (y axis) and is shown as a function of the me

axis) for all series in (E), with the respective number of truncations and TF-DBD c

(F) Specificity determinants are often redundant. Highly effective nonDBD region

truncation series, and the respective internal deletion mutant was generated an

Pearson’s correlationwith the full TF, was then comparedwith the expected effect

indicates redundancy. Each dot is a deletion mutant and color indicates the corr

(G) Specificity determinants often localize to IDRs: the overall effect of truncating I

(cumulative) distributions of the effects. Individual truncations were classified as d

(see STAR Methods).
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showing that the nonDBDs of MSN2 and YAP1 still localize to

a large fraction of TF-bound promoters.23 Reproducible profiles

were obtained for 34 of the 49 nonDBD mutants tested. A

considerable fraction of those retained similarity with their

respective TFs, and these corresponded well with cases of low

DBD-TF correlations (Pearson’s r = �0.38) (Figures 4C and

4D), with few exceptions indicating cooperation (e.g., BAS1) or

redundancy (e.g., ADR1). Therefore, nonDBD and DBD exert

complementary contributions guiding TF binding along the

genome.

NonDBDs showed a high preference for binding OPN pro-

moters, exceeding the preferences of full TFs (Figure 4A).

Accordingly, nonDBD-bound promoters were enriched in

OPN-associated properties35 when compared with TF-bound

ones and more so when compared with those bound by DBDs,

including the presence of TATA boxes, expression plasticity,

and long upstream intergenic distances (Figure 4E).

Finally, we compared the similarity in promoter preferences

between different factors (Figures 4F–4H). Consistent with es-

tablished results, clustering analysis revealed groups of TFs

with similar functions that localize to overlapping promoters,

including clusters of stress-related activators (e.g., MSN2,

CRZ1, and YAP1) or repressors (e.g., SOK2, SKO1, and

MGA1), co-binding TF pairs regulating same processes (e.g.,

STE12-TEC1, INO2-INO4, PDR1-PDR3, and MBP1-SWI4) (Fig-

ure 4F). These correlations largely disappeared when comparing

DBD-onlymutants, with only a few tight correlations remaining or

emerging, mostly restricted to close paralogs (e.g., SWI5-ACE2,

FKH1-FKH2-HCM1, RLM1-SMP1, and RPH1-GIS1). Of note,

these similarities in binding profiles did not extend to other mem-

bers of the sameDBD family, despite similar in-vitro preferences.

In sharp contrast, correlations between TFs increased in the

nonDBD mutants. In fact, although few nonDBDs localized at

unique locations (e.g., TEC1 or SUM1), most others showed

varying ranges of overlaps, with similarities ranging from near

identity (SOK2-related cluster), to moderate (e.g., SOK2 and

CRZ1) and low (e.g., SOK2 and SWI4) correlations (Figure 4H).
isordered regions

equence was gradually shortened at an attempted 50-residue resolution, and

ts were compared with the respective TFs and DBDs, distinguishing between

tion maps (middle and right) illustrate the possible dynamics of the correlation

d by the percentage of nonDBD removed, background color indicates DBD-TF

specificity determinants within the indicated TFs is shown through changes in

t promoter color-coded by the corresponding truncation mutant’s preference.

ng of truncation mutants on the mutant-DBD vs. mutant-TF correlation map is

50-residues truncation mutants. Note the gradual loss of binding to TF-bound

ion maps, as in (A), shown for all cases of one- (C), or two-sided (D) truncations.

elation) are written in black. In two-sided truncations (D), red circles indicate the

e tested. A graduality score, defined as the ratio of maximal to median added

an truncation length, i.e., nonDBD length divided by number of truncations, (x

orrelation indicated by dot color and size.

s were chosen based on the additional decrease in correlation to TF along the

d profiled (scheme on top). The effect of this internal deletion, measured as

based on truncation series (bottom). Note that higher than expected correlation

esponding TF.

DRs or structured regions was calculated for each series, and is shown here as

isordered or structured based on the mean disordered of the removed region
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Therefore, although DBDs’ profiles are clearly distinguishable,

those of the nonDBDs show continuously varying levels of over-

lap (Figure 4G). Notably, despite these considerable overlaps,

promoter preferences of nonDBDs were properly aligned with

these of their respective TFs. This is exemplified by CRZ1 and

SOK2, whose nonDBDs show moderately overlapping prefer-

ences (Figure 4I): although theywere bound at similar promoters,

comparing their binding at each promoter revealed a two-branch

pattern consistent with clear specificity differences between the

two nonDBDs, corresponding to the binding preferences of the

full TFs. We conclude that nonDBDs direct TFs binding toward

overlapping classes of fuzzy nucleosome promoters, with the

DBD acting to refine this pattern through the DBDbinding to spe-

cific motifs.
DISCUSSION

TF binding specificity is critical for gene regulation, making it the

subject of much experimental and computational attention. Most

studies approach this question from the viewpoint of the DNA:

what differentiates the DNA (or chromatin) environment of TF-

bound vs. unbound sites? Here, we undertook a complementary

path, dissecting the TFs themselves as an entry point for distin-

guishing mechanisms of binding specificity. Through extensive

sequence truncations, coupled with the profiling of genomic

binding, we defined the relative roles of DBD and nonDBD se-

quences in guiding TF binding across the genome. Our results

highlight specificity determinants distributed within the nonDBD

sequences, their cumulative action in directing binding speci-

ficity, and their tight association with IDRs.

TF binding across the genome integrates influences of both its

DBD and nonDBD (Figure 5). In some cases, the DBDdominates,

as exemplified by AZF1 whose DBD uniquely includes four C2H2

zinc finger domains, whereas in other cases, the nonDBD dom-

inates, with the DBD stabilizing binding at motifs within nonDBD-

selected promoters (e.g., DOT6). The majority of TFs, however,
Figure 4. NonDBDs restrict TF binding to promoters of fuzzy nucleoso

(A) TF binding correlates with promoter nucleosome architecture: budding yeast p

fuzzy nucleosome architecture (see STAR Methods). Color indicates the preferen

panels indicate previously described promoter classification into TF-bound (R, Ros

coactivator-redundant) and TF-unbound classes, indicating also the ribosomal g

(B) Genomic mapping of nonDBD mutants—a scheme: mutants lacking their DB

(C and D) NonDBDs localize to TF-target promoters: shown in (C) are comparison

Note the tight nonDBD-TF similarity shown byDOT6, contrasting the distinct prefe

r) are compared with respective DBD-TF correlations (D). Note the inverse relation

preference.

(E) Properties of nonDBD-bound promoters: the top bound promoters of each T

TATA-box occurrence, Expression plasticity and intergenic distance). The scatte

(blue) promoters vs. TF-bound ones.

(F–H) nonDBDs display a range of overlapping promoter preferences contrasting

tween all mutants of the indicated types are shown in clustered heatmaps (F) a

clustering, applied separately to each type. Emerging clusters are outlined and exe

selected nonDBDs. Here, each line is promoter, color-coded by the preference

selected and ordered by preference. Note the gradual loss of SOK2-like promot

(I) NonDBDs preferences bias TF binding specificity. Shown are the promoter pr

indicating the ratio of the binding signals of the two corresponding full-length T

promoter preferred by its nonDBD.
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present intermediate situations in which promoter selection by

the nonDBD is refined and stabilized by DBD-motif binding.

DBDs and nonDBDs guide TF binding using distinct strate-

gies. DBDs bind to their short DNA sequence motifs through

structural complementarity, which is highly sensitive to single-

point mutations in interacting amino acids and nucleotide bases.

Despite the large overlap in motif preference between DBDs of

the same family, the overall promoter preferences of same-fam-

ily DBDs are lower than that of the respective TFs, with the

exception of close paralogs. This, perhaps unexpected, result

is explained by the more permissive spread of DBDs across pro-

moters, which contrasts the largely restricted binding of full TFs

to OPN-type promoters of fuzzy nucleosome architectures.

Contrasting this digital-like encoding of DBD-motif binding,

the specificity strategy encoded by nonDBDs follows an

analog-like design. Rather than relying on a single determinant

and structural complementarity, the majority of surveyed

nonDBDs contain multiple specificity determinants that map pri-

marily to disordered regions. The effect of each individual deter-

minant is weak and often redundant so that only their cumulative

action explains nonDBD’s contribution to binding specificity.

This distributed encoding of specificity determinants within

nonDBDs mirrors their promoter preference patterns: rather

than defining distinct and well-separated profiles, nonDBDs’

binding profiles show a wide range of similarities that vary from

full identity to partial or low correlation. Therefore, the wide

distribution of specificity determinants within IDRs allows contin-

uous, analog-like tuning of binding across the set of promoters

with fuzzy nucleosome architectures.

A central remaining unknown is the mechanism through which

IDR-localized determinants direct promoter selection.36 IDRs

can promote the formation of phase-separated conden-

sates37–39 associated with transcription,40,41 and these might

direct genomic binding. Studies examining for clustering of the

IDR-dependent MSN2 TF, however, have failed to detect such

agglomerations.42 Three other immediate options are interaction

with other TFs, recognition of the epigenetic landscape, or direct
mes

romoters (rows) were ordered by their OPN score, a measure associated with

ce of each profiled DBD, TF, and nonDBD (columns) for every promoter. Right

si et al.30; STM, SAGA, TUP, andMediator bound; D, Donczew et al.31; andCR,

ene promoters (RPs).

D were generated and their binding profiles mapped.

s of promoter preferences between the indicated nonDBDs or DBDs and TFs.

rences for UME6. The nonDBD-TF promoter preference correlations (Pearson’s

, indicating complementary contribution of nonDBDs and DBDs to TF promoter

F-DBD-nonDBD triplet were analyzed for the indicated features (OPN score,

r plots show the average value for the DBD- (green) and the nonDBD-bound

DBDs’ distinct binding profiles: the correlations of promoter preferences be-

nd as cumulative histograms (G). Factors in (F) were ordered by hierarchical

mplary members highlighted. (H) displays exemplary promoter preferences for

of the indicated nonDBD. Top 40 promoters bound by each nonDBD were

er preferences across the nonDBD series.

eferences of SOK2 and CRZ1 nonDBD. Each dot is a promoter with the color

Fs (dashed line indicates 1:1 line). Note the higher binding of each TF to the



Figure 5. Strategies for directing genome binding by DBDs and IDRs

TF-binding locations across the genome integrate effects from their DBDs and nonDBDs. Those TF regions direct binding through complementary digital- and

analog-like strategies. These strategies differ at three levels. First, in terms of protein-localized determinants, DBD-motif binding fully depends on particular

contact residues, whereas nonDBDs includemultiplicity of IDR-localized, weak specificity determinants, none of which is essential. Second, in terms of promoter

selection, DBD-motif binding favors local nucleosome depletion, but is permissive concerning the overall promoter nucleosome architecture, whereas IDR-

localized determinants restrict binding to promoters of fuzzy nucleosome architecture. Third, when compared across factors, DBDs show a little overlap in

binding patterns, whereas IDR-enriched nonDBDs show a continuum of overlapping patterns.
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binding to DNA. Of those, interactions between TFs are the most

likely explanation, which we are currently exploring. A related

question is the mechanism leading to analog, rather than digital

control of site selection. The distribution of multiple specificity

determinants within long IDRs appears optimally suited for

analog control but understanding this paradigm will entail eluci-

dating the IDR-based and promoter-based sequence grammar

at the basis of this interaction.

Limitations of the study
Although the broad spectrum of evaluated TFs suggests a gen-

eral principle applying to all yeast TFs, it might be that non-tested

TFs or TFs from other species despite having long IDRs do not

conform to it. In addition, the resolution of the performed trunca-

tions limits our ability to define the exact number and distribution

of individual specificity determinants.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

cOmplete EDTA-free Protease Inhibitor Cocktail Sigma Aldrich Cat#11873580001

Proteinase K Sigma Aldrich Cat#P2308

RNase A Sigma Aldrich Cat#R4875

AMPure XP Beckman Coulter Cat#A63881

Glycoblue Thermo Fisher Cat# AM9515

Zymolase 100T Amsbio Cat#120493-1

IGEPAL CA-630 Sigma Aldrich Cat#I3021

Micrococcal nuclease (MNase) Worthington Cat#LS004797

Digitonin Sigma Aldrich Cat#300410

Spermine Sigma Aldrich Cat# S3256-5G

Spermidine Sigma Aldrich Cat# S026

10x T4 DNA Ligase buffer NEB B0202S

T4 PNK NEB M0201S

T4 DNA Polymerase Thermo Scientific EP0061

Taq polymerase Bioline BIO-21040

Quick Ligase NEB M2200S

KAPA Hifi DNA polymerase Roche 07958927001

Critical commercial assays

HiYield Plasmid Mini Kit RBC Bioscience Cat#YPD100

Deposited data

Raw and processed NGS data This paper GEO: GSE209631

Raw and proc. NGS data for individual full-length TFs Gera et al.24 GEO: GSE179430

Raw NGS data for Msn2 and Yap2 Transcription factor Brodsky et al.23 BioProject: PRJNA573518

Experimental models: Organisms/strains

BY4741 (Saccharomyces cerevisiae) Brachmann et al.43 N/A

C-terminal SWAp-Tag (C-SWAT) library (S. cerevisiae) Meurer et al.44 N/A

Yeast strains This study Table S3

Oligonucleotides

Barcoded Y-shaped adapters Blecher-Gonen et al.45 N/A

Repair Oligos for CRIPSR-based gene editing This study Table S6

Recombinant DNA

bRA89 (plasmid) Anand et al.46 RRID:Addgene_100950

pGZ108 (plasmid) Zentner et al.25 RRID:Addgene_70231

Software and algorithms

MATLAB MathWorks N/A

Bowtie 2 Langmead et al.47 N/A

BEDTools Quinlan et al.48 N/A

cutAdapt Martin et al.49 N/A

CHOPCHOP Labun et al.50 N/A

Custom Analysis codes This Study https://doi.org/10.5281/zenodo.7780657

Growth media

YPD CSHP https://doi.org/10.1101/pdb.rec12315

Synthetic Complete Medium with 2% Glucose Gietz et al.51 N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to the lead contact: Naama Barkai (naama.barkai@

weizmann.ac.il).

Materials availability
All yeast strains generated in this study (see Table S3) are available upon request.

Data and code availability
d All raw sequencing data generated in this study have been deposited at GEO and are publicly available as of the date of pub-

lication. Accession numbers are listed in the key resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast genome editing
Wemade our TFmutants by twomethods of gene editing. For MNase tagging of many of our TFs, we used the C-SWAT52 libraries as

parent strains, picked the strains in which our required TFs have been tagged with the C terminal acceptor module, and replaced this

module with anMNase cassette usingCRISPR. In this process, we remove the uracil auxotrophy (URA3) of the parent C-SWAT strain,

and we introduce the CRISPR-plasmid-borne hygromycin resistance. We also used CRISPR to make all the TF mutants, where we

deleted parts of the nonDBD and DBD by targeting specific regions of the respective TF. We designed DNA repairs that were single

stranded and had a 45 bp homology to the deletion site on each side.

For CRISPR based gene editing, we used the bRA89 plasmid,46 which encodes Cas9, target-specific guide RNA, hygromycin and

ampicillin resistance. We designed the target-specific guide RNA using CHOPCHOP,50 ligated it into the bRA89 plasmid in between

BplI restriction sites. The ligated plasmids were transformed and propagated in E. coli. Successful transformants were selected

based on PCR and plasmids were extracted using a commercial MiniPrep Kit (Real Genomics).

The other strategy we used to insert the MNase tag was homologous recombination. Here, we amplified an MNase cassette from

the plasmid pGZ108,25 using primers having 45 bases homology to the insertion site on each side. This cassette contains the MNase

and Kanamycin resistance.

All yeast strains used in this study are listed in detail in Table S2.

Yeast transformation
All yeast transformations followed the LiAc/SS DNA/PEG method.51 A single colony of the parental strain was inoculated in fresh

liquid YPD and grown to saturation overnight, then diluted into fresh 5 ml YPD and grown to OD600 of 0. 5. The cells are harvested

at this stage, and washed with distilled water and then with 100 mM LiAc twice. Then they were gently resuspended in the transfor-

mation mix (33% PEG-3350, 100 mM LiAc, single stranded salmon sperm DNA) and the DNA oligos (500umols) and plasmid (5ug) as

required for the transformation. This suspension was incubated at 30�C for 30 minutes followed by a 30-minute heat shock at 42�C.
Then, the cells were transferred for recovery at 30�C, either on a YPD plate overnight or for 2hrs in 1mL liquid YPD. After this, they

were plated on the appropriate selection plate. All strains generated were verified using PCR and gel electrophoresis, and also by

Sanger DNA sequencing. For plasmid containing strains, the plasmid was lost by growing the cells in YPD until saturation. The col-

onies that lost the plasmid were selected by screening for the loss of the selection marker. These stains were subsequently used for

experiments.

METHOD DETAILS

ChEC-seq experiments
The experiments were performed as described previously,25 with some modifications24: Yeast strains were freshly thawed before

experiments from a frozen stock, plated on YPD plates, and grown. Single colonies were picked and grown overnight at 30�C in liquid

SD (synthetic complete with dextrose) medium to stationary phase. Then, the cultures were diluted�103-fold into 5 mL fresh SDme-

dia and grown overnight to reach an OD600 of 4 the followingmorning. Cultures were pelleted at 1500 g for 2min and resuspended in

0.5 mL buffer A (15 mM Tris pH 7.5, 80 mM KCl, 0.1 mM EGTA, 0.2 mM spermine, 0.5 mM spermidine, 13 cOmplete EDTA-free pro-

tease inhibitors (1 tablet per 50 mL buffer), 1 mM PMSF) and then transferred to 2.2 mL 96-well plates (LifeGene). Cells were washed

twice in 1 mL Buffer A. Next, the cells were resuspended in 150 mL Buffer A containing 0.1% digitonin, transferred to an 96-well PCR

plate (Axygen PCR-96-flt-c) and incubated at 30�C for 5 min for permeabilization. Next, we added 120 mL of cells to 13 mL of 25 mM
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CaCl2 for a final concentration of 2 mM to activate the MNase and incubated for exactly 30 s. The MNase treatment was stopped by

adding 120 mL of stop buffer (400mMNaCl, 20 mMEDTA, 4 mMEGTA, and 1%SDS) to the cell suspension. After this, the cells were

treated with Proteinase K (0.5 mg/mL) at 55�C for 30 min. An equal volume of Phenol-Chloroform pH = 8 (Sigma-Aldrich) was added,

vigorously vortexed and centrifuged at 17,000 g for 10 min to extract DNA. After phenol chloroform extraction of nucleic acids, the

DNA in the aqueousphase was precipitated with 2.5 volumes (600 mL) of cold 96% EtOH, 45 mg Glycoblue, and 24 mL of 3M sodium

acetate (=20 mM final) at –80�C for>1 hr. DNA was centrifuged (17,000 g, 4�C for 10 min), supernatant removed and the DNA pellet

washed with 75%EtOH. DNA pellets were dried and resuspended in 30 mL RNase A solution (0.33 mg/mL RNase A in Tris-EDTA [TE]

buffer [10mMTris and 1mMEDTA]) and treated at 37�C for 20min. In order to enrich for small DNA fragments and remove large DNA

fragments that might result from spontaneous DNA breaks, DNA cleanup was performed using SPRI beads (Ampure XP). First, a

reverse SPRI cleanup was performed by adding 0.83 (24 mL) SPRI beads followed by 5 min incubation at RT. Supernatant was

collected and the remaining small DNA fragments purified by adding additional 13 (30 mL) SPRI beads and 5.43 (162 mL) isopropanol,

and incubating 5min at RT. Beadswerewashed twice with 85%EtOH and small fragments were eluted in 30 mL of 0.13 TE buffer. For

biological repeats, two yeast colonies with the same genotype were grown separately before the ChECseq experiment, or also often

performed on different days.

NGS library preparation
Library preparation was performed as described in Skene and Henikoff,53 with slight modifications24: DNA fragments after RNase

treatment and reverse SPRI cleanup served as an input to end-repair and A-tailing (ERA) reaction. For each sample 20 mL ERA

reaction (13 T4 DNA ligase buffer [NEB], 0.5 mM dNTPs, 0.25 mM ATP, 2.75% PEG 4000, 6U T4 PNK, 0.5U T4 DNA Polymerase

and 0.5U Taq DNA polymerase) was prepared and incubated for 20 min at 12�C, 15 min at 37�C and 45 min at 58�C in a

thermocycler.

After ERA reaction, reverse SPRI cleanup was performed by adding 0.53 (10 mL) SPRI beads (Ampure XP). Supernatant was

collected and remaining small DNA fragments purified with additional 1.33 (26 mL) SPRI beads and 5.43 (108 mL) isopropanol. After

washing with 85% EtOH, small fragments were eluted in 17 mL of 0.13 TE buffer; 16.4 mL elution were taken into 40 mL ligation re-

action (13 Quick ligase buffer, 4000U Quick ligase, and 6.4 nM Y-shaped barcode adaptors with T-overhang45) and incubated for

15 min at 20�C in thermocycler.

After incubation, ligation reaction was cleaned by performing a double SPRI cleanup: first, a regular 1.23 (48 mL) SPRI cleanup

was performed and eluted in 30 mL 0.13 TE buffer. Then and instead of separating the beads, an additional SPRI cleanup was

performed by adding 1.33 (39 mL) HXN buffer (2.5 M NaCl, 20% PEG 8000) and final elution in 24 mL 0.13 TE buffer; 23 mL elution

were taken into 50 mL enrichment PCR reaction (13 Kappa HIFI, 0.32 mM barcoded Fwd primer and 0.32 mM barcoded Rev

primer45) and incubated for 45 s in 98�C, 16 cycles of 15 s in 98�C and 15 s in 60�C, and a final elongation step of 1 min at

72�C in a thermocycler.

The final libraries were cleaned by a regular 1.13 (55 mL) SPRI cleanup and eluted in 15 mL 0.13 TE buffer. Library concentration

and size distribution were quantified by Qubit (Thermo Scientific) and TapeStation (Agilent), respectively. For multiplexed next-gen-

eration sequencing (NGS), all barcoded libraries were pooled in equal amounts, the final pool diluted to 2 nM and sequenced on

NextSeq 500 (Illumina) or NovaSeq 6000 (Illumina). Sequence parameters were Read1: 51 nucleotides (nt), Index1: 8 nt, Index2: 8

nt, Read2: 51 nt, for NovaSeq or Read1: 38 nt, Read2: 37 nt for NextSeq.

QUANTIFICATION AND STATISTICAL ANALYSIS

NGS data analysis
Raw reads from ChEC-seq libraries were demultiplexed using bcl2fastq (Illumina), and adaptor dimers and short reads were filtered

out using cutAdapt49 with parameters: ‘‘–O 10 –pairfilter=any –max-n 0.8 –action=mask’’. Filtered reads were subsequently aligned

to the S. cerevisiae genome R64-1-1 using Bowtie 247 with the options ‘‘--end-to-end --trim-to 40 --verysensitive’’. The genome

coverage of fully aligned read pairs was calculated with GenomeCoverage from BEDTools48 using the parameters ‘‘-d -5 –fs 1’’.

All further processing of samples was performed using MATLAB. The signal was normalized so that the total number of reads along

the nuclear genome, excluding ribosomal rRNA genes and CUP1-1/2, is 12 million.

Promoter definition
We defined transcription start sites (TSS) by comparative analysis of publicly available TSS datasets.54–56 Promoter region was

defined from the start codon until at least 700 bp upstream of the TSS or until the closest verified ORF.

Promoter preference and preference correlation (Figures 2, 3, and 4)
For each promoter (n=5399, excluding promoters in sub-telomeric regions), we first sum the normalized ChEC signal over the whole

promoter. Then, we define promoter preference of a mutant to a certain promoter as the z-Score normalized binding signal of this

mutant at that promoter compared to all other promoters. In our analysis, we compare the promoter preferences of different samples

by calculating the Pearson’s correlation coefficient across all promoter preferences (unless specified to be for target promoters only).

Target promoters of a certain TF or mutant are promoters with a Z-score>2.5 for this mutant.
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Normalized ChEC signal representation (Figure 1G)
The plot shows the median of the normalized ChEC signal between biological repeats. The signal is scaled such that the upper limit

represents 60% of the maximum signal across all promoters.

In-vitro 7mer score and top 7mer selection
If available, the PBM-derived in-vitro position weight matrix (PWM) for each TF was downloaded from the CIS-BP database4 (the

actual PBM-IDs used can be found in the Table S2). After normalizing the PWM by the distribution of nucleotides in yeast promoters,

we log2 transformed the position weight matrix. For PWMs longer than 7nt, the seven most-informative consecutive positions were

selected based on the variance of weights at the respective positions. We then scored each 7mer against this PWM choosing the

highest score when considering forward and reverse orientation as well as different offsets. For each mutant, the top 7mer was

then defined as the 7mer with the highest in-vivo score in the TF or its mutant (see below) among the 10 7mers with the highest

in-vitro scores.

In-vivo 7mer scores
For the in vivo 7mer analysis, all possible 7mer sequences were given a numerical index (8192 indices in total, with forward and

reverse complement sequence of each 7mer given the same index). Each nucleotide in the yeast genome was indexed according

to the 7mer that centers on it. To measure the binding at each position, we first average ChEC-signal of 31 bp surrounding the

site (-15 to +15), then subtracting the average ChEC-signal 7bp around the site (-3 to +3 bp). This subtraction is done to account

for the observed ChEC signal depletion at the exact TF binding site, as the MNase only cuts in the vicinity and not at the TF binding

site. The in-vivo 7mer score is then defined as the mean value of this calculated score at all promoter regions containing this motif.

Motif enrichment analysis (Figure 1J)
For each TF and its DBD, we defined the motif enrichment (ME) as follows:

ME = log2 (mean(BSn,m))/(mean(BSp,m))

where BSn,m is the total ChECSeq signal of Variant m (DBD or TF) around all occurrences (+/- 25bp) of the Top 7mer of DBD and TF in

promoters combined; and BSp,m corresponds to the binding signal on all promoter locations.

7mer selection bias (Figures 2A and 2B)
The 7mer selection bias is defined as the Z-score-normalized in-vivo 7mer score (see above) of the top 7mer (see above) of the TF or

DBD when compared against the 7mer scores of all 8192 possible 7mers for the TF or DBD, respectively.

Binding signal on 7mer site and fraction of bound sites (Figures 2C and 2D)
For this, we consider all the sites in promoters containing the top DBD and TF 7mer (see above). The cumulative binding signal around

each site (+/- 25 bp) is calculated and shown in 2D. The bound fraction for TF or DBD is then defined as the fraction of sites with signal

above 3% of the maximum signal across these sites in DBD or TF, respectively.

Correlation maps (Figures 3B–3D)
Correlation maps were generated by first combining the target promoters (promoter preference>2.5) of full-length Transcription fac-

tor and the DBD. Then the correlation between each truncation and the TF or the DBD across these target genes is calculated and

plotted on the Y- and X–axis respectively. The DBD and TF correlation of the missing 50-AA truncations were interpolated from the

surrounding 2 truncations using linear interpolation, where the independent variable is the number of removed residues and the

dependent variable is the correlation with the TF or DBD respectively.

Relative binding across truncations (Figure 3B)
To calculate the relative binding across the truncation series on a particular target promoter, we first calculated the binding signal on

this promoter (PBS) in each mutant. The relative binding log2-FC(fold change) at each mutant was then defined as:

log2(PBSi,j + 700) – mean(log2(PBSn,j + 700)),

with PBSi,j being the PBS of mutant I at promoter j and PBSn,j being the PBS of all the nonDBD truncation mutants of that TF (n) at

promoter j.

Graduality score (Figure 3E)
To calculate the graduality score of each truncation series, we first interpolated every 50AA truncation (see above) and then calcu-

lated all Euclidean distances between consecutive interpolated truncations on the correlationmap, i.e. truncation effect. The gradual-

ity score (graScore) was then defined as:

graScore = log2 (median 50aa truncation effect)/(max 50aa truncation effect)
Molecular Cell 83, 1462–1473.e1–e5, May 4, 2023 e4
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and rescaled:

graScore Rescaled = graScore/4+1

so that it is 1 when all truncations have the same effect and 0 when 20% of the truncations have 80% of the cumulative effect. Fig-

ure 3E shows the rescaled graduality score for all investigated TF series.

Defining structured and disordered regions (Figure 3G)
We use the IUPRED257 algorithm to determine the disorder scores along the residues of all TFs. To classify a truncation into disor-

dered or structured, we calculate themean disorder score across all additionally removed residues compared to the last truncations.

If this mean score is >= 0.5 we classify this truncation as disordered, and structured otherwise.

Clustering of TF, DBD, and nonDBD or promoters (Figure 4F)
To analyze similarity between binding profiles of TF, DBDs or nonDBD, we first calculate the pairwise correlation distance between

the individual mutants (1-corr(V1,V2)) and then used this distance to generate a agglomerative hierarchical clustering tree using the

build-in matlab function ‘‘linkage’’ with the method set to ‘‘average’’. This tree was then used to optimally order the binding profiles

using ‘‘optimalleaforder’’ and the emerging clusters manually assigned and shown on the heatmap.

To analyze similarities between combined target promoters of all TF, DBD or nonDBDs we first calculated the distance between

two target promoters as their correlation across all mutants, i.e. TF, DBD or nonDBDs, and then used the same functions as above to

visualize the clustering. To define clusters we used the build-in hierarchical cluster algorithm ofMATLAB ‘‘cluster’’ with ‘‘criterion’’ set

to ‘‘distance’’ and various threshold values as indicated on the plot.

Gene expression plasticity (Figure 4E)
For each gene, expression plasticity was calculated as the standard deviation of this gene’s relative expression across 1484 yeast

deletion mutants analysed by Kemmeren et al.58

OPN score (Figure 4A)
OPN score was calculated as described in Rosin et al.34 The TSS proximal region was defined as the region from the TSS to 150bp

upstream the TSS, and the TSS distal region was defined as the region between 200-400 bp upstream the TSS. Then, the average

nucleosome occupancy in the proximal and the distal regions was calculated, and the DPN-score was defined as: log2(average

nucleosome occupancy at distal TSS) – log2(average nucleosome occupancy at proximal TSS).
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