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Abstract Complex periodic patterns can self-organize through dynamic interactions
between diffusible activators and inhibitors. In the biological context, self-organized pat-
terning is challenged by spatial heterogeneities (‘noise’) inherent to biological systems.
How spatial variability impacts the periodic patterning mechanism and how it can be
buffered to ensure precise patterning is not well understood. We examine the effect of spa-
tial heterogeneity on the periodic patterning of the fruit fly eye, an organ composed of ∼800
miniature eye units (ommatidia) whose periodic arrangement along a hexagonal lattice self-
organizes during early stages of fly development. The patterning follows a two-step process,
with an initial formation of evenly spaced clusters of ∼10 cells followed by a subsequent
refinement of each cluster into a single selected cell. Using a probabilistic approach, we cal-
culate the rate of patterning errors resulting from spatial heterogeneities in cell size, position
and biosynthetic capacity. Notably, error rates were largely independent of the desired clus-
ter size but followed the distributions of signaling speeds. Pre-formation of large clusters
therefore greatly increases the reproducibility of the overall periodic arrangement, suggest-
ing that the two-stage patterning process functions to guard the pattern against errors caused
by spatial heterogeneities. Our results emphasize the constraints imposed on self-organized
patterning mechanisms by the need to buffer stochastic effects.
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Author summary

Complex periodic patterns are common in nature and are observed in physical, chemical and
biological systems. Understanding how these patterns are generated in a precise manner is a
key challenge. Biological patterns are especially intriguing, as they are generated in a noisy
environment; cell position and cell size, for example, are subject to stochastic variations, as
are the strengths of the chemical signals mediating cell-to-cell communication. The need
to generate a precise and robust pattern in this ‘noisy’ environment restricts the space of
patterning mechanisms that can function in the biological setting. Mathematical modeling
is useful in comparing the sensitivity of different mechanisms to such variations, thereby
highlighting key aspects of their design.

We use mathematical modeling to study the periodic patterning of the fruit fly eye. In
this system, a highly ordered lattice of differentiated cells is generated in a two-dimensional
cell epithelium. The pattern is first observed by the appearance of evenly spaced clusters
of ∼10 cells that express specific genes. Each cluster is subsequently refined into a single
cell, which initiates the formation and differentiation of a miniature eye unit, the omma-
tidium. We formulate a mathematical model based on the known molecular properties of
the patterning mechanism, and use a probabilistic approach to calculate the errors in cluster
formation and refinement resulting from stochastic cell-to-cell variations (‘noise’) in differ-
ent quantitative parameters. This enables us to define the parameters most influencing noise
sensitivity. Notably, we find that this error is roughly independent of the desired cluster size,
suggesting that large clusters are beneficial for ensuring the overall reproducibility of the
periodic cluster arrangement. For the stage of cluster refinement, we find that rapid com-
munication between cells is critical for reducing error. Our work provides new insights into
the constraints imposed on mechanisms generating periodic patterning in a realistic, noisy
environment, and in particular, discusses the different considerations in achieving optimal
design of the patterning network.

Keywords Drosophila eye · Robust periodic patterning · Mathematical modeling ·
Noise · Spatial heterogeneity · Lateral inhibition

1 Introduction

The body plan of multicellular organisms is defined during embryonic development, when
uniform fields of cells are patterned into distinct tissues and organs positioned in spa-
tially distinct domains. This patterning is defined by biochemical networks of interacting
genes and proteins, some of which are secreted to the extracellular environment and medi-
ate communication between cells. The precision by which spatial patterns are defined and
their reproducibility between individuals is particularly striking when considering the inher-
ent stochastic variability of the underlying biological processes [1–3]: external conditions
such as temperature or nutrients vary, genetic polymorphisms distinguish between individ-
uals, and random fluctuations arise due to the discrete nature of the underlying molecular
processes. Understanding how such variations are buffered is a key theoretical and exper-
imental challenge [4]. Previous studies have demonstrated, for example, how this need for
robustness has shaped the molecular mechanisms that establish a spatial gradient of mor-
phogens, molecules that can induce distinct cell fates in a concentration-dependent manner.
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Therefore, a robust establishment of a morphogen gradient ensures a reproducible splitting
of the field into distinct spatial domains [5–7].

While patterning by morphogen gradients has been extensively studied, less is under-
stood about the robustness of mechanisms that self-organize periodic patterns. Perhaps the
best-studied example for a precise periodic pattern that self-organizes during development
is the eye of the fruit fly Drosophila melanogaster. The complex eye of the adult fly is built
of a hexagonal array of ∼800 units, the ommatidia, each of which is composed of 20 pho-
toreceptors and supporting cells [8, 9]. This precise periodic pattern of the eye is defined
during the larvae stage, when the immature adult eye is present as a two-dimensional epithe-
lial tissue (eye disc). Patterning begins when the disc includes ∼2000 cells, all of which
have an identical capacity to be selected as the pre-neuronal cells defining the future eye
unit [10]. A dynamic network then selects the pre-neuronal cells through a two-stage pro-
cess. First, an activating wave sweeps across the disc and leaves behind an ordered array of
clusters composed of ∼10 cells, each of which expresses specific markers (the pre-neuronal
clusters) [11, 12]. Subsequently, each cluster is refined into a single selected founder cell
surrounded by ∼20 cells that will form an ommatidium [Fig. 1a and b] [13]. As a result of
this process, the selected cells are positioned in a hexagonal lattice-like arrangement.

Cluster selection proceeds sequentially from column to column. Each selected cell
secretes an inhibitory signal that prevents selection of nearby cells. In effect, the inhibitory
signals define an inhibitory circle around each selected cluster, where selection is not
possible. These selection-resistant-regions are defined rapidly following cluster selection,
reaching in front of the progressing activation wave. Consequently, the evenly spaced clus-
ters in each column define the position of the clusters in the next column by the points
of minimum inhibition [14]. In principle, this mechanism could also result in the imme-
diate selection of clusters of just one cell, obviating the need for a two-stage process. For

Fig. 1 Pattern formation of founder photoreceptors in the fruit fly eye. Posterior is to the right. a Confocal
image of a portion of a developing disc. Membrane outlines are visualized with FasIII (green) and differen-
tiating cells with the nuclear differentiation marker Senseless (red). The inset represents a magnified view
of the boxed region including and immediately after the formation of clusters. b Scheme of the developmen-
tal process. The black arrow indicates long-range activation propagation. Clusters secrete inhibitory signals
(indicated by black circles) that direct the formation of the clusters ahead to discrete, evenly spaced posi-
tions. Each cluster is later refined into one cell through contact lateral inhibition. c Cluster formation in one
dimension. Time is on the vertical axis and cell position on the horizontal axis. Cluster size is defined by the
number of cells that become refractory (selected) before the first cell in the cluster produces inhibition (red
horizontal line). tac, tr and t in are the times when each cell is activated, becomes refractory and produces
inhibition, respectively. τb is the time gap between activation of two adjacent cells and n is the size of the
cluster



A. Gavish, N. Barkai

example, previous quantitative models have shown that a single-cell pattern can propagate
to define the observed pattern. In this formulation, clusters appeared as a transient stage
of the dynamics, but did not contribute to the inhibitory-signal pattern propagation, which
was defined by the single selected cell [15]; alternatively, we reasoned that clusters could
participate in the actual pattern formation if all cluster cells would contribute to the lateral
inhibition process, and that this may promote patterning robustness. Here, we use a rigor-
ous mathematical approach to show that this two-stage process, whereby the full clusters
contribute to pattern propagation, indeed increases the patterning robustness.

Spatial heterogeneity is likely to be substantial within the epithelial tissue where eye
patterning takes place. First, random variations in cell size, cell position and cell shape
are common, and impact the effective inhibition radii defined by the secreted diffusing
inhibitors. Second, stochastic fluctuations in the cell biosynthetic capacity introduce spatial
variations in the rate at which the inhibitors are produced.

To examine how this spatial variability influences the precision of patterning, we for-
mulated a mathematical model describing the patterning process, and used a probabilistic
approach to calculate the probability of patterning errors. First, we examined the proba-
bility that a cluster will be larger (or smaller) than a desired cluster size, n. Second, we
estimated the probability that cluster refinement will fail. Notably, the rates of errors in
the cluster formation were independent of cluster size. Rather, they were largely depen-
dent on the distributions of signaling velocities. Pre-formation of large clusters therefore
greatly increases the reproducibility of the overall periodic arrangement, suggesting that the
two-stages patterning process functions to guard the pattern against errors caused by spatial
heterogeneities. Our results emphasize the constraints imposed on self-organized patterning
mechanisms by the need to buffer stochastic effects.

2 Results

2.1 A model for generating a periodic pattern through sequential activation

We formulated a general model of cluster formation through sequential activation. Consider
an ordered one-dimensional array of cells Ci that are activated sequentially at times tac

i =
t0 + i

v′ , v being the velocity of the activation wave, which we assume to be uniform in
time and space. Once activated, each cell initiates an internal process that, after some time
delay, results in its selection at time t ri . After a second time delay, each selected cell will
start secreting inhibition at time t ini . We assume that the inhibitory signal secreted by the
first selected cell diffuses rapidly [10, 16] and extends beyond the area that will become
the future cluster. This signal will prevent selection of all cells that have not been selected
by that time, but will not influence cells that have already been selected, as these cells are
refractory to inhibition. In the absence of noise, the number of selected cells n is given by the
number of cells that have been selected before the first cell began producing the inhibition:

n =
⌈

t in − t r1

τb

⌉
=
⌈

δt

τb

⌉
, (1)

where t in ≡ t in1 is the time when the first cell in the cluster began secreting the inhibitory
signal, δt is the time gap between the times the first cell was selected and the time it began to
produce the inhibitor signal, and τb = 1

v is the time lag between activation of two adjacent
cells [Fig. 1c]. Thus, if 0 < δt < τb, only the first cell to be activated will be selected, as
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this first cell will inhibit all other cells prior to their selection, leading to a cluster of size
n = 1. Similarly, if τb < δt < 2τb both the first and second cells to be activated will become
selected before the first cell begins secreting the inhibition signal, leading to a cluster of
size n = 2.

In the sections below, we compare error probabilities in formations of clusters of different
sizes, starting with n = 1. n = 1 is the simple case of ‘one-step patterning’, since a pattern
of single cells is formed a priori and no further step of cluster refinement is required. n > 1,
on the other hand, is the case of ‘two-step patterning’, as each cluster is further refined to a
single cell.

2.2 Cluster formation in the presence of noise: the error probability for a cluster
of size n = 1

To introduce noise into this model, we choose t r out of some distribution P(tr ). In the
biological context, this distribution summarizes the variability in the molecular constituents
of the patterning network interpreting the activation signal. For simplicity, we assume that
P(tr ) is uniformly distributed in a region of width 2τσ centered around the mean �t r . τσ

captures the strength of the molecular noise, namely the cell-to-cell variability in the time it
takes an activated cell to reach the selection threshold. The time at which the cell i becomes
refractory is given by t ri = t r + (i − 1)τb, where t r is selected from the distribution P(tr ).

Assume now that the mean (desired) number of selected cells in the cluster is n. Our
goal is to calculate the probability of errors, namely the probability that a larger or smaller
number of cells will be selected. For the case n = 1, precise selection requires that the
times by which cells Ci, i = 2, 3, 4 . . . are selected (t ri ) are all larger than the time the first
cell begins secreting the inhibitory signal (at the time t in = t r1 + δt). Cells in position i,
for which �t r + (i − 1)τb − τσ > �t r + δt + τσ , will comply with this demand regardless of
the noise realization, and will therefore be necessarily inhibited before becoming refractory.
Errors will therefore be due only to cells i for which t̄ r + (i − 1)τb − τσ < �t r + δt + τσ .
Note that in principle, although we assume t̄ r + (i − 1)τb > �t r + δt , for all i > 1 (the
requirement for cluster size n = 1) a noise τσ that is significantly larger than the selection
bias τb would still allow multiple cells to be selected before becoming refractory.

For simplicity, we first examine the simplest case, in which only the cell positioned at the
border of the cluster (i = 2) can contribute to the error. In this case, the error is given by:

ε = 1 − P n=1

P n=1 =
∫ �t r+δt+τσ

�t r+δt−τσ

1

2τσ

dtin
∫ �t r+τb+τσ

max{t in,�t r+τb−τσ }
1

2τσ

dtr

=
{

1 δt + 2τσ ≤ τb
τb−δt
2τσ

+ (2τσ +τb−δt)(2τσ −τb+δt)

2(2τσ )2
else

(2)

where δt = �t in−�t r captures the time delay from the mean time of selection to the mean time
of beginning producing the inhibitor. Note again that for the present case of n = 1, δt < τb.
The first integral in (2) sums over all possible times t in at which the first cell can produce
inhibition. For each possible t in, the second integral sums over the possible times the second
cell is selected after t in (making this an irrelevant selection as the cell is already inhibited).

While the solution of the two integrals is straightforward in this case, it is useful to
consider their geometrical interpretation, as this interpretation is iterated for the more com-
plicated case. In the non-trivial case δt + 2τσ > τb, P n=1 is simply the sum of a rectangle
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and a trapezoid [Fig. 2a and b]. The rectangle is obtained from the inhibiting times t in that
precede all possible times for the second cell selection, which is max

{
t in, �t r + τb − τσ

} =
�t r + τb − τσ . For these values, the second integral equals 1, as there are no further restric-
tions on the times in which the second cell can be selected. The area of this rectangle is
simply the fraction of t in for which this constraint is obeyed, multiplied by the probability
density [first term in the non-trivial solution to P n=1 in (2)]. The trapezoid is obtained from
the region where max

{
t in, �t r + τb − τσ

} = t in, in which case too early selection of the
second cell will result in an error. The area of this trapezoid is given by the second term in
the non-trivial solution to P n=1 in (2). The trapezoid’s large base is given by the maximal
possible range of t r2 that will give minimal selection (when t in is minimal) and its small base
is defined by the minimal possible range of t r that will give minimal selection (when t in is
maximal). Its height is the size of the region in which the error can occur (too early selection
of the second cell), namely δt +2τσ − τb. Again, its area should be normalized by the prob-
ability density. Therefore, the rectangle represents regions of no constraint, where times can

Fig. 2 Cluster formation in the presence of noise for the case n = 1. a–b Capturing noise in time distri-
butions. The refractory time t ri is chosen out of a distribution P(tr ) of width 2τσ , centered at �t r .The red

distribution represents P(tin) and δt = ¯t in − �t r is the time gap between selection and inhibition production
of the first cell. The rectangle (in green) and trapezoid (in yellow) correspond to the shapes in (b) and repre-
sent the probability P n=1 in different regions for choosing t in. To obtain the terms calculated in (2), the area

of the rectangle and trapezoid should be normalized by 1
2τσ

and ( 1
2τσ

)
2
, respectively. The trapezoid’s angle

is 45◦, because for each point in the overlapping domains of P(tr2 ) and P(tin) we require that t in < tr2 , the
number of these requirements giving the trapezoid’s height. c The error probability ε is a function of τb and
δt in the simplest case. Error was calculated accounting only for cell i = 2 even when τb was small enough
to allow selection of more cells to potentially lead to error. Error probability increases sharply when τb � 1
(for δt

τb
≈ 0.5). d–e General case of n = 1. d More cells can potentially be selected before t in (here also

cell i = 3), leading to an error. e The error probability ε for when accounting for all cells that can lead to
error. This error becomes higher than the approximated error shown in (c) as τb decreases and contributions
to error from cells i ≥ 3 become more significant
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be chosen freely, whereas the non-rectangular shape (here a trapezoid) represents regions of
constraint, where in order for no error to occur the times have to be chosen in some order.

Figure 2c shows the solution for ε(τb, δt, n = 1) in (2), plotted as a function of the two
normalized variables τb → τb

2τσ
and δt → δt

2τσ
. Thus, the activation delay between two

adjacent cells τb and the delay from selection to production of the inhibitor δt both refer
to a noise distribution 2τσ of width 1. As shown, the error ε increases sharply with δt (in
regions δt + 1 > τb in which ε > 0) and when τb < 1 (for δt

2τσ
≈ 0.5). Erroneous instances

can occur even when τb > 1, depending on δt . Notably, we assumed that cell i = 1 could
not inhibit its own selection when δt < 1, as it became refractory before producing the
inhibitor, and therefore erroneous formation of a cluster of size n = 0 is not possible.

A similar derivation can be used to calculate the error probability in the general case,
where additional cells (not only the cell i = 2) can contribute to the error by being selected
before t in [Fig. 2d]. Focusing again on cluster size n = 1,the error in this more general
scenario is given by:

ε = 1 − P n=1,

P n=1 =
∫ �t r+δt+τσ

�t r+δt−τσ

1

2τσ

dtin
K∏

i=2

∫ �t r+(i−1)τ b+τσ

max{t in,�t r+(i−1)τb−τσ }
1

2τσ

dtr . (3)

CellsCi, i = 2, 3..K can potentially be chosen before t in, and therefore contribute to the
error. Cells Ci, i > K cannot contribute to the error as �t r + Kτb − τσ > �t r + δt + τσ . Note
that the possibility that a cell will be chosen before being inhibited and therefore contribute
to the error decays with the distance of the cell from the first cell i = 1,as such cells will
be activated later. Therefore, for a large i the corresponding integral in the product in (3)
approaches 1. In this view, the error can be presented as a series whose leading term is
obtained by calculating the error probability with respect to cell i = 2 alone, and whose
remaining terms stem from the remaining neighbors which we consider as perturbations
whose contribution to error decreases the further they are from the first cell:

ε = 1 − (P n=1(1) + P n=1(′)
) (4)

where P n=1(1)
is the probability for no error to occur after accounting only for cell i = 2

which we calculated in (2). P n=1(′) = P n=1(2) + . . . + P n=1(K−1)
are corrections of higher

orders. As discussed above, in the geometrical approach, the leading term represents a
single requirement (t r2 > tin) and therefore contains only two-dimensional geometrical
shapes. Higher order terms represent multiple constraints and will therefore be represented
by shapes of higher dimension; for example, if two cells contribute significantly to the
error (i = 2, 3), then the correct selection would require that both t r2 > tin and t r3 > tin.
This can be represented by shapes of three dimensions. In general, when accounting for
j ≤ K potentially selected cells before t in, the error is represented by shapes with (j + 1)
dimensions.

Figure 2e shows the general solution for ε(τb, δt, n = 1) in (3), in which erroneous
selection of all potential cells i = 2, 3..K was accounted for (τb → τb

2τσ
and δt → δt

2τσ
). The

extent to which (2) is a valid approximation of (3) depends on the value of τb; the larger is
τb, the better the approximation; it is accurate when τb ≥ 1 and differs more from the
exact error given by (3) as τb decreases and the contributions of cells i ≥ 3 become more
significant.
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2.3 Error probability for a cluster of size n = 2

The error probability in the case n = 2 can be calculated following a similar line of reason-
ing. Now, a proper selection of only two cells is obtained when the second cell is selected
before the time at which the first cell begins secreting the inhibitory signal, whereas cells
Ci , i = 3, 4, 5 . . . are selected after that time. Again we first start with the simplest case in
which an error can only stem from cells at the cluster borders; that is if either cell i = 2 is
selected after t in (leading to n = 1) or if cell i = 3 is selected before t in (leading to n = 3),
but cells i > 3 do not have this potential of being selected before t in [Fig. 3a]. Note that
if both errors occur together, the cluster will be of the correct size n = 2, but will not be
continuous; hence, we consider this as an erroneous selection. The error is therefore given
by:

ε = 1 − P n=2

P n=2 =
∫ �t r+δt+τσ

�t r+δt−τσ

1

2τσ

dtin
∫ min{t in,�t r+τb+τσ }

�t r+τb−τσ

1

2τσ

dtr
∫ �t r+2τb+τσ

max{t in,�t r+2τb−τσ }
1

2τσ

dtr (5)

As in (2), the first integral captures the possible times for the first cell to produce inhibition.
For each possible t in, the second integral captures the possible times for selecting the second
cell, while demanding this time to be before t in and the third integral captures the times for
selecting the third cell after t in.

The major difference from the case n = 1 discussed above is that for the simple case of
n = 1 we sought a single requirement—that is t in < tr2—which could be represented by
two-dimensional shapes. Now, also the simplest case incorporates the multiple requirements
t r2< tin < tr3 , for correct selection of cells on both sides of the cluster border. In this aspect,
all cases of n ≥ 2 are the same, sharing the same demand t rn< tin < trn+1 for correct
selection, which also gives the first-order term in the error if not obeyed. Compared to
n = 1, three-dimensional shapes represent the multiple requirements in the simplest cases
for n ≥ 2, as shown below. It is therefore helpful to first solve explicitly the error for n = 2
and then generalize for larger clusters.

As we did for (2), we can divide (5) into different terms compatible with geometrical
shapes. Let us do so by examining three possible scenarios, in which t r2 was selected from
the green, blue or yellow rectangular domains in Fig. 3a and terming the probabilities for
non-erroneous cluster formation in each of the cases as P n=2

I , P n=2
II and P n=2

III respectively.
For simplicity we set �t r + τb − τσ ≡ 0 and change the notations by denoting δ1 = δt − τb

and δ2 = τb − δ1, where δ1 is bounded by 0 < δ1 < τb [Fig. 3a]. Adjusting (5) accordingly,
P n=2

I is simply given by setting the upper limit in the second integral to fit with the green
rectangular borders in Fig. 3a:

P n=2
I =

∫ δ1+2τσ

δ1

1

2τσ

dtin
∫ δ1

0

1

2τσ

dtr
∫ τb+2τσ

max{t in,τb}
1

2τσ

dtr .

The second integral in P n=2
I gives the height of the two following shapes: a cuboid obtained

for when the third integral is 1 (when max
{
t in, τb

} = τb is the lower limit of the third

integral and the upper limit of the first integral) whose base is the rectangle δ2
2τσ

and volume

is V cuboid = δ1
2τσ

δ2
2τσ

. A prism obtained for (max t inτb) = t in whose base is the trapezoid

Strapezoid = 1
(2τσ )2

1
2 (2τσ + δ2) (2τσ − δ2) and volume is V

prism

1 = δ1
2τσ

·Strapezoid . Thus,

P n=2
I = V cuboid + V

prism

1 .
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Fig. 3 Error probability in cluster formation for the cases n ≥ 2. a Error probability for n = 2 is calculated
by dividing the distribution of t r2 into different domains (in green, blue and yellow). b A three-dimensional

shape whose volume represents the probability for t r2 < tin1 < t
r

3, when t r2 is chosen from the yellow rectangle

in (a). The trapezoid in black on the xy plane represents the probability t r2 < tin. For each possible domain
for choosing t in, varying between the large and small bases of the black trapezoid, a trapezoid on the yz

plane can be drawn (in gray), representing t in < tr3 . The angles of all gray trapezoids are 45
◦ (not drawn). To

obtain the probability P n=2
III calculated in (6), the volume should be normalized by ( 1

2τσ
)
3
. c Error probability

ε as a function of τb and δ1 for the case n = 2. ε increases sharply when τb < 1. d Error probability ε as a
function of τb and δ1 for the case n = 8. The error differs more from the case n = 2 in (c) as τb decreases
and additional cells can potentially be selected after t in, compared to the case n = 2 in which only cell i = 2
can potentially do so. e Cluster formation in two dimensions. Different columns, represented by different
colors, contain cells activated at the same time. The number of cells in each column is determined by the
column’s position with respect to the inhibition circles. f Error probability for the case n = 3 columns shown
in (e). Since erroneous selection of many more cells (particularly at the cluster border) can now lead to error,
ε increases sharply much earlier, at τb = 1.5

Obtaining P n=2
II is similar. The only change is that now t r2 is chosen from the blue

rectangular domain, and therefore:

P n=2
II =

∫ δ1+2τσ

δ1

1

2τσ

dtin
∫ min{t in,τb}

δ1

1

2τσ

dtr
∫ τb+2τσ

max{t in,τb}
1

2τσ

dtr .
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The two possible shapes are now prisms, depending on the lower limit of the third integral
(or the upper limit of the second integral): a prism for when the third integral is 1 (the
prism’s height), whose base is a triangle originating from the first two integrals and whose

volume is V
prism

2 = δ22
2(2τσ )2

. A prism obtained when max
{
t in, τb

} = t in, whose base is

the same trapezoid as of S
prism

1 , whose height is δ2
2τσ

and volume is therefore V
prism

3 =
δ2
2τσ

1
(2τσ )2

1
2 (2τσ + δ2) (2τσ − δ2). Thus, P n=2

II = V
prism

2 + V
prism

3 .

To obtain P n=2
III , we need to refer to the yellow rectangular domain out of which t r2 is

now chosen where t r2 < tin < tr3 is required simultaneously. In Fig. 3b, the black trapezoid
on the xy plane represents the chances for t r2 < tin. As for all previous trapezoids, the
trapezoid’s large base denotes the maximal possible domain for choosing t in (when t r2 is
minimal) and its small base denotes the minimal possible domain for choosing t in (when
t r2 is maximal). For each of the allowed domains of t in, varying between 2τσ − δ2 and
δ1 (lower and upper bases of the black trapezoid), a trapezoid on the yz plane (in gray)
can be drawn, representing the respective probabilities for t in < tr3 . For instance, in the
case when t r2 is minimal (lower base in black), the large base of the trapezoid on the yz

plane corresponds to when t r3 is maximal (t in is minimal) and the small base corresponds
to when t r3 is minimal (t in is maximal). This shapes volume can be obtained from (5),
after resetting the limits of the second integral, or be calculated directly from Fig. 3b as
P n=2

III = 1
(2τσ )3

∫ 2τσ −δ2
δ1

dk 1
2 (k + 2δ2) k. The error in the simplest scenario for n = 2 is

therefore:
ε = 1 − (P n=2

I + P n=2
II + P n=2

III ). (6)

Note that even for τσ < τb < 2τσ as in Fig. 3a, cell i = 4 can potentially be chosen before
t in if δ1 + 2τσ > 2τb.

In the general case for n = 2, when more cells (not only cell i = 3) can potentially be
selected before t in, the error is:

ε = 1 − P n=2,

P n=2 =
∫ δ1+2τσ

δ1

1

2τσ

dtin
∫ min{t in,2τσ }

0

1

2τσ

dtr
K∏

i=2

∫ (i−1)τb+2τσ

max{t in,(i−1)τb}
1

2τσ

dtr . (7)

As we did for n = 1 we can write (7) as a series whose leading term which we calculated in
(6) and contains three-dimensional shapes, captures error stemming from cells at the cluster
border (cells i = 2, 3) where chances for mistake are the highest. The remaining terms of
the series contain shapes of four and higher dimensions (i.e., P n=2(1) +P n=2(2)

requires that
t r2 < tin < tr3 and t r2 < tin < tr4 and will therefore be represented by four-dimensional
shapes).

Figure 3c shows the solution for ε(τb, δ1, n = 2) in (7), using the normalized terms
τb → τb

2τσ
and δ1 → δ1

2τσ
. As shown, the error probability increases sharply when the delay

in activation between adjacent cells is small relative to the distribution width of the noise
(τb < 1). Error is also dependent on the parameter capturing the delay between selection to
inhibition production (δ1 = δt − τb); when

δ1
τb

> 0.5, the error increases with δ1 as a result

of erroneous selection with respect to cells i ≥ 3 and when δ1
τb

< 0.5, the error decreases
with δ1 as a result of erroneous selection with respect to cells i = 2. Note that for the case
n = 1 [Fig. 2c and e], the error only increases with δt , since erroneous selection can only
occur with respect to cells i > 1. Supplementary Fig. 1 shows the similarity between the
approximated error [given by (6)] and (7) for different values of τb.
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2.4 Error probability for a general n in one and two dimensions

With the same approach, we obtain the error for any given n = n′ as:

ε = 1 − P n=n′
,

P n=n′ =
∫ δ1+(n′−2)τb+2τσ

δ1+(n′−2)τb

1

2τσ

dtin
M∏

j=n′

∫ min{t in,(j−2)τb+2τσ }

(j−2)τb

1

2τσ

dtr
K∏

i=n′+1

∫ (i−2)τb+2τσ

max{t in,(i−2)τb}
1

2τσ

dtr . (8)

CellsCj , j = n′ (n′ − 1
)
, . . . , M (M ≥ 2) can potentially be chosen after t in and therefore

contribute to the error. Cells Ci, i = n′ +1, . . . , K can potentially be chosen before t in and
therefore contribute to the error. For a given τb, which determines the number of cells that
can contribute to the error, K − 1 ≤ M ≤ K + 1, depending on δ1.

As for the case of n = 2, (8) can be written as a series, whose first-order term stems from
cells n′ and n′ + 1 at the cluster border, represented by three-dimensional shapes, whereas
shapes of higher dimensions represent terms of higher order. Thus, all cases in which n ≥ 2
are not essentially different with respect to the leading term in the series describing their
error probability, but might differ in the number of the remaining terms for a given τb

(in cases of a larger n, more cells might be required to be selected before t in). Figure 3d
demonstrates that the solution for ε(τb, δ1, n = 8) in (8) is very similar to the solution for
ε(τb, δ1, n = 2) in Fig. 3c, having a higher error probability of only ∼ 0.05 when τb is min-
imal (τb = 0.2) and the largest number of additional cells can potentially be selected after
t in . This means that when n ≥ 2, the error is roughly independent of n, implying that in
order to minimize relative fluctuations in cluster size, n should be large. These fluctuations
(errors) are bound to occur in the realm of biologically measured parameters, as shown in
the next section. Optimal cluster size is ultimately obtained by considering other constraints
in the system impinging upon a large n, such as cluster size not exceeding the limit at which
all cells in the cluster contact directly for the proper latter process of cluster refinement.

Equations (1–8) above can readily be generalized for two-dimensional clusters [Fig. 3e].
Here, n represents the number of columns in the cluster, rather than the number of cells. The
number of cells in each column depends on the column’s placement between the inhibition
circles. The error for any given n = n′ in two dimensions is:

ε = 1 − P n=n′
,

P n=n′ =
⎧⎨
⎩
∫ δ1+(n′−2)τb+2τσ

δ1+(n′−2)τb

1

2τσ

dtin
M∏

j=n′

(∫ min
{
t in,(j−2)τb+2τσ

}
(j−2)τb

1

2τσ

dtr

)l(j)

K∏
i=n′+1

(∫ (i−2)τb+2τσ

max{t in,(i−2)τb}
1

2τσ

dtr
)q(i)

}
, (9)

where l(j) and q(i) are the number of cells in the columns that can potentially be selected
before or after t in respectively, and all other notations are otherwise the same as in (8).

Figure 3f shows the solution for ε(τb, δ1, n = 3) in (9), corresponding to the error in
the formation of the two-dimensional cluster of ten cells shown in Fig. 3e. Here, the error
has a high probability of occurring even when τb � 1.5, as many more cells at the cluster’s
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border contribute to the error’s first term (four cells in column i = 3 and five cells in column
i = 4), compared to a maximum of two cells at the cluster border in one dimension.

2.5 Assessing error probability in cluster formation by estimation of the
activation delay τb

Following the formulations above (6)–(9), we investigated whether, based on biological
measurements, errors in cluster formation have a high probability of occurrence. For this
purpose, we sought to evaluate the normalized τb(

τb

2τσ
), since the realm in which the

activation-delay is located is a key predictor for error. In a one-dimensional system, error in
cluster formation can practically be avoided if τb > 1 (given δ1

τb
∼ 0.5), whereas if τb < 1

errors are highly probable [Fig. 3c and d]. In a two-dimensional system, errors might be
avoided if τb > 1.5, but are practically inevitable if τb < 1.5 [Fig. 3f].

For obtaining a rough estimation of τb

2τσ
, the time lag between activation of adjacent cells

(or columns of cells in two dimensions) τb needs to be assessed and then divided by the
distribution width capturing the variability in the molecular constituents of the patterning
network interpreting the activation signal 2τσ . The long-range activation wave lays down
a new column of cells roughly every two hours [17], distanced ∼6 cells from the column
behind [18] and compatible with a bias of ∼20 minutes between activation of adjacent cells.
The distribution width, 2τσ , can be estimated by the time lapse between activation (initial
elevation of the pro-neural gene atonal) and selection (expression of the gene senseless as
part of a cluster), which is roughly 15 cells [19]; namely 15 times the bias above multiplied
by the noise level in the system. Altogether, the normalized bias in the process of cluster
formation can be approximated as:

τb ≈ 20

15 · 20 · noise
= 1

15 · noise
. (10)

Thus, even when assuming relatively low biological noise of less than 10%, the normalized
τb is less than 1.

The error in cluster formation is also dependent on δ1, which is more difficult to estimate,
as there is no clear indication of when the first cell in the cluster started producing inhibition.
Notably, for a given τb the error is minimal when δ1

τb
= 0.5. In the biological realm of

τb ≈ 0.67 calculated by (10) when accounting for 10% noise, the error probability is ∼ 0.5
in one dimension [(7) and Fig. 3c] and ∼ 0.8 in two dimensions [(9) and Fig. 3f]. Error
probability rises even more for other values of δ1 or when accounting for more noise. The
formation of relatively large clusters is therefore highly beneficial, as they are less sensitive
to absolute fluctuations in cluster size that are bound to occur.

Figure 4 illustrates the benefit of two-step patterning (n > 1) compared to one-step pat-
terning (n = 1). The effective inhibitor range, which determines the placement of newly
forming clusters, is dependent on cluster size for given values of the inhibitor diffusion
coefficient, the threshold above which a cell is inhibited and the inhibitor production and
degradation rates (Appendix A). The relative difference between inhibition ranges surround-
ing clusters of different sizes (when all other parameters are fixed) therefore depends on
the relative difference between their sizes; when the relative difference in sizes is large, the
relative difference between inhibition ranges is large, and vice versa.

In one-step patterning, single cells produce the inhibitor [Fig. 4a]. Any deviation from
n = 1 [red cells in Fig. 4a] will largely affect the inhibition range surrounding the erroneous
cluster, since the relative error in cluster size is large. This will lead to a distortion in the
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Fig. 4 Comparison between one-step and two-step patterning. Posterior is to the right. aOne-step patterning
in one and two dimensions. A hexagonal pattern of single cells is generated a priori, separated by inhibition
secreted by each cell. In one dimension (upper scheme), each cell secretes inhibition that determines the
position of the cell ahead (inhibition secreted by posterior cells is in broken turquoise). If as a result of an
error, a cluster of n = 2 is formed (cell in red was erroneously selected), the relative error in size is δn

n
= 1,

δn being the deviation in cluster size from the desired n = 1. Since the relative error is large, inhibition
secreted by this cluster will reach a significantly larger effective range (black line), thus ruining periodicity.
Similarly, in two dimensions (lower scheme) a new column of cells is placed in the intersection between the
inhibitory circles surrounding posterior cells (broken turquoise circles). If because of an error an excess cell
is selected (red cell), the inhibition surrounding this cluster will largely differ from its neighbors, severely
affecting the placement of the anterior column ahead. b Two-step patterning in one and two dimensions. The
relative error for n = 5 is illustrated, when an excess cell was selected (in red), that is δn

n
= 0.2. Thus, the

relative difference between the inhibition range surrounding the erroneous cluster to that of its neighbors is
lower compared to that in (a), and the hexagonal periodicity is less affected. Broken turquoise line (upper
scheme) and circles (lower scheme) illustrate the inhibition surrounding the original clusters of n = 5

hexagonal periodicity, which may rapidly amplify in the layout of later columns. In two-
step patterning, when multiple cells produce the inhibitor, the relative error in cluster size
can be largely reduced [Fig. 4b]. Thus, an error in cluster formation [red cells in Fig. 4b]
is of less consequence. Errors in clusters of size n ≈ 10, like in the Drosophila eye, might
hardly affect hexagonal periodicity.

2.6 A model for error probability in cluster refinement

Patterning in the eye is a sequential process in which each of the clusters, after directing
the placement of the clusters ahead, is refined into a single founder cell that, together with
the surrounding ∼20 cells later to differentiate, constitute a single eye unit (an ommatid-
ium). Successful refinement of a cluster to a single founder cell is important; failure to
refine, where two (or more) founder cells differentiate adjacently (‘twinning’), will lead to
a distortion in the eye of the adult fly (eye roughening) [12].

Thus, we next sought to determine the probability of the failure to refine a cluster of
n cells, whose formulation was described in the sections above, into a single cell. To this
end, we extended a previous model by Barad and coworkers for minimizing error in lateral-
inhibitory circuits [20]. Cluster refinement is achieved via transmission of inhibitory signals
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through direct contact of cells in the cluster [21]. The first cell to inhibit its neighboring cells
will be selected as the founder cell. For simplicity and without loss of generality, we assume
that contact-induced transmitted inhibition is a direct late consequence of activation by the
propagating wave. Therefore, the first cell in the cluster to be activated is the one favored to
become a founder cell. Since the system incorporates noise, not all cells respond the same
to the activating signal, and it is therefore possible for some other cell, which was not the
first to be activated, to be the first to inhibit its neighbors and become selected. The noise
in the system also enables selection from a group of seemingly equivalent cells, which were
activated at the same time (like cells in the same column in two dimensions), as one of these
cells might be the first to interpret the activation signal and thereby inhibit its neighbors
and become selected. We refer to successful refinement as the selection of a single cell,
regardless of whether this cell was favorable. Refinement is considered erroneous if none of
the cells in the cluster succeeded in inhibiting the remaining cells, and therefore more than
one cell was selected.

We introduce noise to the process of refinement following the same approach we used
in the process of cluster formation. However, since all the cells in the cluster now compete
by trying to inhibit their neighboring cells, the model for cluster refinement is somewhat
different than the model we formulated for cluster formation, in which only the first cell (or
cells in two dimensions) produces the inhibitor. We term the time when each cell starts to
induce contact-dependent inhibition of its neighbors tD (termed after the ligand mediating
inhibition – Delta). To introduce noise, we choose tD out of some distribution P(tD), which
we assume is uniformly distributed in a region of width 2τσ centered around the mean �tD .
Since the molecular constituents governing the process of refinement are not the same as
those governing cluster formation, τσ , which captures the strength of the molecular noise,
is generally different in both processes. In two dimensions, each cell in column i is selected
from P(tD) at time tDi = tD + (i − 1)τb, depending on the column’s position [Fig. 5a].

Based on a previous study [20], we introduce two more terms that play a role in the
process of refinement: 1). The inhibition-time delay, termed τ , which is the time gap from
when a cell first initiates contact-inhibitory signaling to when its neighbors start responding
to that signal, i.e., are actually repressed. Note that this parameter was also incorporated
indirectly in the previous process through the time gap between selection and inhibition δt

(or δ1). 2) The developmental time window, termed T , which is some intrinsic time limit
following activation after which, if not repressed beforehand, cells will become selected by
default. Such selection by default has been proven true in other developmental processes
[20].

Assume that the first cell starts inhibiting its neighbors at t = tDI ; successful refinement
is obtained if all the remaining cells in the cluster are chosen at some later times tDI + τ <

t < T . Explicitly, if the second cell will be selected at t = tDII < tDI + τ , this cell will
become selected before responding to inhibition from the first cell, leading to selection of
two cells. In addition, if tDI +τ > T , the remaining cells are selected by default and therefore
are not responsive to inhibition from the first cell. For obtaining a general term for the
error ε(τb, nτ, T ), namely the probability for more than one cell to be chosen from a two-
dimensional cluster with n columns, it is useful to first define the probability for a cell in

column i to be successfully inhibited by the first cell as Qi

(
tDI

) = ∫ �tDi +τσ

max{ ¯tDi −τσ ,tDI +τ }
1

2τσ
dt .

For simplicity we set the beginning of the first cell’s distribution �tD − τσ , to be 0. We term
P n→1 as the chance for a cluster of n columns to refine itself successfully into a single cell.
The general term for the error ε(τb, nτ, T ) is given by:
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Fig. 5 Cluster refinement in the presence of noise. a A probabilistic approach for choice of the times when
contact lateral inhibition is induced. τ is the inhibition time-delay indicated in red. In this example, there is
a chance for the cluster to refine into a single cell from columns 1 or 2, if all other cells in columns 1, 2 and
3 are chosen τ time units later. Though there is no chance for a cell in column 3 to inhibit cells in column
1, it is possible for a cell in column 3 not to be inhibited. b Error probability ε as a function of τb and τ .
ε increases with τ and decreases with τb . In the region where τb > 1 + τ , the error merely stems from
impaired refinement within the first column, which we assume has two cells. c Same as (b) for when τ

τb
is

kept constant. Increasing τb and τ at the same rate leads to an increase in ε. d ε as a function of τb and of the
developmental time window T . ε is insensitive to T down to some limit beneath which the probability error
increases sharply

ε = 1 − P n→1,

P n→1 =
n∑

i=1

l(i)

(∫ min{(i−1)τb+2τσ −τ,T }

min{(i−1)τb,T }
Q

l(i)−1
i dtDI

)
n∏

j �=i

Q
q(j)
j . (11)

The integral in (11) sums all possibilities for inhibition production by the first cell (tDI ),
which is one out of l(i) cells in any column i out of n. This cell must inhibit all other cells
in its column i, reflected by the term Q

l(i)−1
i in the integral, and further inhibit all cells in

the remaining columns j �= i, reflected by the term Q
q(j)
j , where q(j) is the number of

cells in column j . Note that the upper limit of the integral must reach (i − 1) τb + 2τσ − τ

only if column i has l (i) ≥ 2 cells, for the first cell to successfully inhibit its neighbors
in the column after incorporating the inhibition-delay (τ). If l (i) = 1, the first cell has no
neighboring cells in the column, and therefore tDI can run until (i − 1) τb + 2τσ , unless the
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distribution for selecting a cell in an adjacent column starts beforehand. Thus, if l (i) = 1,
the upper limit of the integral should be min {(i − 1) τb + 2τσ , iτ b − τ, T }.

A geometrical approach for probability calculation can be implemented as before and
(11) can be represented as a series. The series leading term represents successful refinement
solely in the first column i = 1, out of which a cell has the highest probability to be
chosen, and which will be represented by two-dimensional shapes if l (1) = 2, or by higher
dimensional shapes if l (1) > 2. Terms of higher order successively stem from accounting
for further columns i > 1, namely for their inhibition or potential refinement (i.e., the
second term is obtained when also accounting for successful inhibition or refinement of
cells in column i = 2).

2.7 The interplay between the parameters governing cluster refinement

We next wished to examine the relative contribution of each of the parameters influencing
refinement to the error given by (11). To examine error dependence on the model parameters
we assume the number of cells in each column to increase by one cell relative to the column
behind, starting with a column of two cells [as in Fig. 3d]. We further assume at first that the
number of columns in the cluster, n, is not a limiting factor in the refinement (as would be
the case where, for example, τb and τ require reference to three columns for refinement such
as in Fig. 5a, but the cluster has only n = 2 columns. See the Supplementary Information
for when this is not true). Normalizing by the distribution width as before (τb → τb

2τσ
;

δ1 → δ1
2τσ

; τ → τ
2τσ

), Fig. 5b illustrates ε(τb, τ ) for when T > 1 + τ . Here too, T does

not play a role in cluster refinement since the first cell will surely reach tDI within the time
window T . As observed by Barad and coworkers [20], the error probability decreases with
τb and increases with τ . The larger the time-gap in activation (τb), the lesser the chances for
the first cell not to succeed in inhibiting the cells in further columns, and therefore the error
decreases. The larger τ is, the higher the chances for inhibition by the first cell not to be
interpreted before selection of other cells, and therefore the error increases. Note that when
τb > 1 + τ the probability for error (when τ is large enough) merely stems from failure
to select one out of the two cells in the first column, as all cells in the other columns will
surely be inhibited.

Interestingly, when τ
τb

is kept constant [Fig. 5c], the relative influence of the two parame-
ters (the activation-delay and the inhibition-delay) on the error probability is revealed, where
ε(τb, τ ) increases when increasing τb and τ at the same rate. These findings, concerning
the limited capability of the bias (τb) to compensate for the inhibition-delay (τ), strongly
suggest mechanisms that minimize τ for obtaining minimal error probability, rather than
merely increasing τb.

Figure 5d illustrates ε(τb, T ) when τ is a constant (τ = 0.07), and shows that the error
probability becomes sharply sensitive to T beneath a certain limit. Occurrences that result
in an effective decrease in the developmental time window are thus unfavorable.

2.8 Assessing the key parameters controlling the error in cluster refinement

Erroneous refinement of clusters is very rare in wild type [22]. This imposes constraints
on the key parameters controlling refinement. As shown above, a rapid inhibition-delay (τ)

and a broad time-window (T ) are the main contributors to successful refinement [Fig. 5].
However, a large activation-delay ( τb

2τσ
� 1) moderates the restraints on these parameters

whereas a small one ( τb

2τσ
� 1) reinforces them; when the normalized activation-delay is
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large, τ
2τn

can reach up to ∼0.04 and T
2τn

can reach down to ∼ 0.5 for error to rarely occur
[Fig. 5b and d]. When τb

2τσ
is small, the requirements for a rapid inhibition-delay (τ) and

a broad time-window (T ) become more stringent. Thus, to assess the constraint stringency
on the key parameters governing refinement, we newly estimated the normalized τb(

τb

2τσ
) in

the process, based on biological measurements.
We assume that initiation of the refinement process is directly dependent on long-range

activation and therefore that the non-normalized bias τb is the same as in the process of
cluster formation. However, the noise in the process of refinement, which we capture in a
distribution of width 2τσ , is different from the noise in the process of cluster formation, as
the molecular constituents of the patterning networks in both processes are different. Thus,
a rough approximation of τb

2τσ
can be obtained by newly estimating the distribution width

in the process of refinement, the bias itself being 20 min such as in the cluster formation.
We now estimate 2τσ as the time lags between selection (first expressing the gene senseless
as part of a cluster) and the time when a cell is singled out of the cluster, which is com-
patible with 12 cells (two columns of clusters) [19] multiplied by the bias. Altogether, the
normalized bias in the process of cluster refinement can be approximated as:

τb ≈ 20

12 · 20 · noise
= 1

12 · noise
. (12)

Thus, also in the process of refinement, even when assuming relatively low biological noise
of less than 10%, the normalized τb is less than 1. This implies stringent restraints on the
key parameters governing refinement; namely the inhibition-delay to be sufficiently low
( τ
2τσ

� 0.04) and the developmental time-window to be sufficiently large ( T
2τσ

� 0.5)
[Fig. 5b and d].

3 Discussion and conclusions

Biological systems are challenged by the need to perform effective computational tasks in
a highly stochastic environment. The need to buffer stochastic variability largely restricts
the space of possible mechanisms that can function in the biological setting. Noise buffer-
ing is particularly critical during embryonic development, where precise tissue patterning is
needed to ensure the reproducibility of the adult body plan. Previously, we as well as oth-
ers have shown how robustness is achieved in mechanisms splitting the tissue into distinct
domains of gene expression. Here, we extended the analysis to the less studied paradigm
of periodic patterning, where a lattice-like arrangement of selected cells self-organizes, as
exemplified in the eye of the fruit fly Drosophila.

Periodic patterning of the fly eye is executed in two steps. First, evenly spaced clusters of
∼10 cells are defined. Second, these clusters are refined into a single selected cell. The first
stage of cluster selection is critical not only for sequential refinement, but also for ensuring
large-scale hexagonal periodicity. This is because clusters in each column define the posi-
tion of clusters in the next column, allowing errors to propagate and in fact become rapidly
amplified. Previous mathematical models that tested different aspects of robust patterning
in the Drosophila eye did not highlight the significance of cluster formation and its impor-
tance for robust periodical refinement [15, 23]. We were therefore particularly interested in
the parameters that control the sensitivity of cluster formation to spatial heterogeneities in
cell size, shape, position or biosynthetic capacity.

For defining this sensitivity, we formulated a probabilistic model that allowed us to cal-
culate the probability of error in cluster formation. Analytically, we approximated this error



A. Gavish, N. Barkai

as a series, whose leading terms correspond to the error coming from misclassifying cells
at the cluster border. We further showed that each term in this series can be represented as a
geometrical shape, providing simple interpretation of the different error terms.

We found that cluster size has little influence on the error probability. Therefore, when
attempting to reduce the relative fluctuations in cluster size it is beneficial to work with
large clusters. This may explain why in the biological setting large clusters are formed prior
to their refinement into a single selected cell, rather than selecting single cells already in the
initial step. Related systems, which require precise ordering of solitary cells in the presence
of spatial heterogeneity, might also adopt a similar strategy to buffer noise, temporarily
expanding the initial selection, to be refined at a subsequent stage.

Efficient refinement of the selected clusters depends on all cluster cells being in close
proximity to enable contact inhibition. This requirement limits the maximal cluster size. In
the case of fly eye patterning, the effective cell proximity between cells is enhanced by the
action of cytonemes [24, 25], specialized cellular extensions through which cells can com-
municate. Cluster size, which in the fly eye patterning contains∼10 cells, is likely to present
a compromise between maintaining of a robust cluster size (which favors large clusters) and
achieving efficient refinement (which favors smaller and well-connected clusters).

The advantage of rapid signaling at the stage of cluster refinement was described in a
previous study [20], which focused on refinement of clusters of fully equivalent cells. In the
present context, the cluster cells are not fully equivalent, as they are selected sequentially
and begin producing lateral inhibition signals at different times. This introduces an effective
bias towards the selection of a particular cell—the one that was the first to be selected. We
also find that in this case, rapid response to the lateral inhibition is essential and presents
the main parameter controlling the error in cluster refinement. Surprisingly, perhaps, we
find that biologically relevant biases (τb) cannot compensate for too slow signaling. Mech-
anisms that decrease τ , such as cis-mediated lateral inhibition [20], are therefore needed to
eliminate erroneous refinement, as instances of twinning very rarely occur in wild type.

Another key parameter in optimizing cluster refinement is the developmental time win-
dow (T ); in other words, the time over which the lateral inhibition signals can prevent
selection before cells are selected by default. This time window should be sufficiently long
to allow proper refinement. T can be effectively increased by local signaling that enhances
the accumulation of inhibitors. In a recent work, we argued that a short-range activator must
be assumed to enable robust cluster selection, and identified the secreted protein Scabrous
as the predicted activator [26]. Lack of Scabrous results in a ‘twinning’ phenotype (selec-
tion of two adjacent cells) [12]. We propose that the twinning phenomenon results from an
effective decrease in T when the activator Scabrous is absent.
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Appendix A: Mathematical model for cluster formation

The formulation of a time-based approach model for understanding the process of cluster
formation is described in detail in a separate work (Ref. [15] and [26] in the main text),
and is mentioned here briefly for completeness. This model considers three variables: a
long-range, non-autonomous activator h, a non-autonomous short-range inhibitor u and a
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self-inducing activator a. A selected cell is a cell that stably expresses a. The equations that
describe the interplay between these variables in one dimension are:

τa

da

dt
= Paθ (a − aa) − λaa + Gθ (h − h1) (1 − θ (u − u1)) (13)

τh

dh

dt
= Phθ (a − ah) − λha + Dh

∂2h

∂x2

τu

du

dt
= Puθ (a − au) − λua + Du

∂2u

∂x2

where τa, τh, and τu denote the typical time scales of a, h and u that we used to normalize
all other parameters; Pa, Ph, and Pu are the respective production constants; λa, λh, and λu

are the respective degradation rates; Dh, and Du are the respective diffusion constants and
θ(a) is the Heaviside step function, which is equal to 1 for positive values and 0 otherwise.

Assuming a uniform propagation of h with a speed v, we replace the precise term for h

with:

τh

dh

dt
= Phθ (vt − x) + Dh

∂2h

∂x2
− h (14)

which has the solution:

h (x, t) =
⎧⎨
⎩

Ph − Ph

(
vτh+c1
2c1

)
exp

[(−vτh+c1
2Dh

)
x̄
]
, x̄ < 0

Ph

(−vτh+c1
2c1

)
exp

[(−vτh−c1
2Dh

)
x̄
]
, x̄ > 0

c1 =
√

(vτh)
2 + 4Dh. (15)

We can now calculate the time when a cell i at position x is activated (h > h1), assuming
zero initial level of a:

tac
i = 1

v
χ + δ0; δ0 = 1

v

2Dh

vτh + c1
ln[ h1

Ph

(
2c1

−vτh + c1
)], (16)

Similarly, the times when each cell becomes selected (a > aa) and when the first cell in
each cluster reaches the threshold for inhibition production are given by:

t ri = tac
i + δ1; δ1 =

(
τa

λa

)
ln[ G

G − aaλa

], (17)

t ini = t ri + δ2; δ2 =
(

τa

λa

)
ln[aaλa − (G + Pa)

auλa − (G + Pa)
], (18)

The number of cells that become refractory to inhibitory signals before the first cell reaches
the threshold for inhibition production determines cluster size n. Accordingly,

n
1

v
+ t r1 < tin1 . (19)

Substituting (17), (18) and (19), we obtain:

n =
⌈
vτa

λa

ln [aaλa − (G + Pa)

auλa − (G + Pa)
]
⌉

. (20)
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Appendix B: Analytical term for error probability in cluster formation
for the case n = 2

The error in the general case for n = 2, given by (7) can be written analytically as:

ε = 1 −
⎧⎨
⎩

δ1 + δ2 − 1
2

(
δ21 + δ22

)
τb > 1; δ1 = min {δ1, 1} ; δ2 = min {δ2, 1}

δ1 · δ2 + 1
2δ

2
2 + (η + γ + ϕ)

m∏
i=1

(
1 + i (δ1 + δ2) − t in

) 1
j

< τb < 1
j−1 ,

(21)
where j= 2, 3, 4 . . . and the operators η

(
t in

)
, γ

(
t in

)
and ϕ(tin) are given by:

η =
q∑

m=1

{δ1 + δ2 + min [m − 1, j − 2] · (δ1 + δ2)}
∫ min{(m+1)(δ1+δ2),1+δ1}

m(δ1+δ2)

dt in

γ =
j−2∑
m=1

∫ (m+1)(δ1+δ2)

m(δ1+δ2)

dtr2

∫ (m+1)(δ1+δ2)

tr2

dtin

ϕ =
∫ 1

(j−1)(δ1+δ2)

dtr2

n∑
m=j−1

∫ min{1+δ1,(m+1)(δ1+δ2)}

max{t r2,m(δ1+δ2)}
dtin (22)

and where −1 ≤ q =
⌊
1+x
x+y

⌋
≤ j .

Here, q = j if P(tin) overlaps with P(trj+2), corresponding with the possible overlap of

P(tin) with P(tr4 ) in Fig. 3a in the main text.
The error probability ε(τb, δ1) above stands for n = 2, in which t in must be chosen prior

to any number of overlapping cells chosen from the distribution for t r3 and the distributions
to follow, but succeeds only t r2 . Obtaining ε for a general n (8) requires demanding t in

to succeed a larger number of cells determined by τb, the net effect being a higher error
probability.

Appendix C: Analytical term for error probability in cluster refinement

As described in the main text, it is convenient to first define the probability for a cell i to be
successfully inhibited by the first cell producing inhibition as:

Qi

(
tDI

)
=
∫ ¯tDi +τσ

max{ ¯tDi −τσ ,tDI +τ }
1

2τσ

dt =
⎧⎨
⎩ 1 ¯tDi − τn > tDI + τ

¯tDi +τn−(tDI +τ)

2τσ
otherwise

(23)

The probability for error refinement (after normalizing all terms by 1
2τσ

), given by (11), can
be written analytically as (see Table 1 for integral limits):

ε =
⎧⎨
⎩ 1 − ∫ min{<tD1 >+ 1

2 ,T +θ( 32−n1)}
<tD1 >− 1

2
dtDI

(
n1
1

)
Q

n1−1
1 τb > 1 + τ

1 − μ − η − λ 1+τ
j

< τb < 1+τ
j−1 ; j = 2, 3, 4 . . .

μ =
j∑

m=1

∫ lim 2

lim 1

(
n1
1

)
dtDI Q

n1−1
1 ·

m∏
k=2

Q
nk

k (24)
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Table 1 Limits of the integrals in (C)

lim 1 n1 = 1 max{< tD1 > − 1
2 ,< tDm > − 1

2 − τ }
n1 > 1 min{max

{
< tD1 > − 1

2 ,< tDm > − 1
2 − τ

}
,< tD1 > + 1

2 − τ, T }
lim 2 n1 = 1 min{< tDm+1 > − 1

2 − τ,< tD1 > + 1
2 , T }

n1 > 1 min{< tDm+1 > − 1
2 − τ,< tD1 > + 1

2 ,−τ, T }
lim 3 min{max

{
< tDm > − 1

2 ,< tDq > − 1
2 − τ

}
,< tD1 > + 1

2 − τ, T }
lim 4 min{< tDq+1 > − 1

2 − τ,< tD1 > + 1
2 − τ, T }

lim 5 min{< tDj > − 1
2 ,< tD1 > + 1

2 − τ, T }
lim 6 min{< tD1 > + 1

2 − τ, T }

These limits hold for when n ≥ j , so all overlapping probabilities must be considered when calculating
ε. If n < j , namely only part of the overlapping distributions must be considered, j should be replaced
by n in (C), and to terminate integration before referring to cells that do not exist, all terms of the forms
< tDm+1 > − 1

2 − τ and < tDq+1 > − 1
2 − τ should be replaced with < tDm+1 > − 1

2 − τ + θ(m + 1 − n) · τb

and < tDq+1 > − 1
2 − τ + θ(q + 1 − n) · τb , respectively

η =
j−1∑
m=2

j∑
q=m

∫ lim4

lim3

(
nm

1

)
dtDI Q

nm−1
m ·

m−1∏
l=1

Q
nl

l ·
q∏

k=m+1

Q
nk

k

λ =
∫ lim6

lim5

(
nj

1

)
dtDI Q

nj −1
j ·

j−1∏
k=1

Q
nk

k

where n1 . . . nj are the number of cells in the columns 1 . . . j . We assumed the inhibition
delay to be smaller than the distribution width and the bias (τ < min{τb, 1}). θ( 32 − n1) in
the upper limit for τb > 1+ τ is the step function that equals 1 if n1 = 1 (in which case we
demand ε = 0 regardless of T ), or otherwise equals 0.
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