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This month: relating single cells to populations (Cao/Packer, Wu/Altschuler, O’Brien, Friedman), an excess of
ribosomes (Barkai), human pathology atlas (Uhlen), signatures of feedback (Rahi), and major genome rede-
sign (Baumgart).
Single-Cell Transcriptional Profiling
of a Multicellular Organism
Junyue Cao, Jonathan Packer, Robert Waterston,

Cole Trapnell, and Jay Shendure, University of

Washington

Principles
Single-cell RNA sequencing (sc-RNA-seq) has

emerged as a powerful strategy for resolving

cellular heterogeneity in multicellular organisms.

One of the challenges in designing sc-RNA-seq ex-

periments is that some cell types can be orders of

magnitude less frequent than others, but costs per

cell scale linearly. To address this challenge, we

developed a combinatorial indexing strategy to

profile the transcriptomes of large numbers of sin-

gle cells at a sample preparation cost that grows

sub-linearly with the number of cells processed

(single-cell combinatorial indexing RNA-seq, or

sci-RNA-seq) (Cao et al., Science 357, 661–667).

To demonstrate the potential of sci-RNA-seq,

we dissociated whole C. elegans larvae and

sequenced >50,000 cells from this population,

effectively achieving over 50-fold ‘‘shotgun’’

coverage of the global cellular content of the

organism. We identified 27 major cell types, as

well as 40 neuron subtypes, including rare cells

types corresponding to one or two cells in the

C. elegans. All of our data and analysis scripts

are available at http://atlas.gs.washington.edu.

‘‘. . .we developed a combi-
natorial indexing strategy to
profile the transcriptomes
of large numbers of single
cells. . .effectively achieving
over 50-fold ‘‘shotgun’’
coverage of the global
cellular content of the organ-
ism (C. elegans larvae).’’

What’s Next?
We anticipate that combinatorial indexing may be

used to profile multiple aspects of cell state, along

with lineage history, temporal, and spatial informa-

tion, in the same single cells. We are also working

toward profiling each cell throughout the life cycle

of the worm.
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Sampling to Capture Single-Cell
Heterogeneity
Satwik Rajaram, University of Texas Southwestern;

Lani F. Wu and Steven J. Altschuler, University of

California, San Francisco

Principles
Large-scale experiments are increasingly per-

formed to characterize cell-to-cell heterogeneity

and identify components that have functional

meaning. This often requires assessing heteroge-

neity across a large number of conditions. How-

ever, repeated samples may be difficult to obtain,

particularly from scarce or nonrenewable patient

tissue, and experiments can be costly. A critical

question is: how many samples should be taken

from a population to be confident that cellular het-

erogeneity has been captured well?

We develop a data-driven framework to analyze

a user-provided, ‘‘reference’’ collection of samples

and estimate the sampling depth required to reli-

ably profile heterogeneity in prospective studies

(Rajaram et al., Nat. Methods, published online

September 4, 2017. http://dx.doi.org/10.1038/

nmeth.4427). The method searches within the

provided collection for a minimal number of sub-

samples that can confidently return a phenotypic

distribution that is similar to that of the whole pop-

ulation. While applicable to any single-cell study,

this approach is particularly important for image-

based studies, where tissue heterogeneity may

vary from region to region, and more subsamples

would be required to characterize the true hetero-

geneity than for a well-mixed population.

‘‘The method searches
within the provided collec-
tion for a minimal number
of subsamples that can
confidently return a pheno-
typic distribution that is
similar to that of the whole
population.’’

What’s Next?
The current approach is designed to work with one

cellular feature at a time. A natural extension will be

to consider multivariate measures of phenotypic

similarity between subsamples and whole popula-

tions. The approach depends on whether a refer-

ence collection of samples truly represents the

underlying biological heterogeneity, and prospec-

tive studies may be useful feedback to update

estimates of sampling depth.
017 Published by Elsevier Inc.
Organ Size: Act Locally to Control
Globally
Jackson Liang and Lucy Erin O’Brien, Stanford

University

Principles
Most adult organs are in a state of continuous turn-

over, in which old differentiated cells are lost and

replaced by new progeny of stem cells. For organs

to maintain constant size, there must be strict

equilibrium between cell loss and production.

However, the mechanistic basis of this equilibrium

has been poorly understood.

Examining the Drosophila adult midgut, we

found that tissue-level equilibrium arises through

local signals from dying enterocytes that release

a block on stem cell division (Liang et al., Nature

548, 588–591). When an enterocyte undergoes its

natural death, loss of E-cadherin triggers induction

of rhomboid and consequent secretion of EGFs.

These EGFs signal to nearby stem cells, which

spurs a stem cell to divide and generate a new

replacement. Only stem cells within a set radius

of the dying cell receive the EGF signal. These

zones of EGF activation, integrated across the

expanse of the tissue, may set and maintain organ

size over the organism’s lifetime.

‘‘. . .our findings imply that
the spatial density of stem
cells is central to organ size
control. . . .’’

What’s Next?
First, our findings imply that the spatial density of

stem cells is central to organ size control, but

how is this density established and sustained?

Second, we show that stem cells respond to

enterocyte loss; conversely, do enterocytes sense

stem cell divisions and adjust their lifespans

accordingly?

http://atlas.gs.washington.edu
http://dx.doi.org/10.1038/nmeth.4427
http://dx.doi.org/10.1038/nmeth.4427
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2017.09.005&domain=pdf
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Cells Combine Cytokine Signals in a
Hierarchical-Additive Manner
Inbal Eizenberg-Magar, Jacob Rimer, and Nir

Friedman, Department of Immunology, Weizmann

Institute of Science

Principles
Understanding the logic by which cells respond to

complex signal combinations is of major interest.

We studied signal integration by CD4 T cells, using

flow cytometry to systematically map their

response to 64 mixtures of cytokines that drive

their differentiation (Eizenberg-Magar et al., Pro-

ceedings of the Nat. Academy of Sciences 114,

E6447–E6456). We find that in response to varied

input combinations, cell populations span a contin-

uum of cell fates, as opposed to a limited number

of discrete phenotypes. Furthermore, although

the response of individual cells is highly heteroge-

neous, the mean response of cell populations is

more predictable.

Mathematical modeling explains these results

using hierarchical summation of cytokine inputs

and correctly predicts responses to new input con-

ditions. According to this model, the response to a

combination of cytokines is the weighted sum of

responses to individual cytokines, but some cyto-

kines are more dominant and tune the weights by

which the other cytokines contribute to the additive

response.

‘‘. . .in response to varied
input combinations, cell
populations span a contin-
uum of cell fates, as
opposed to a limited number
of discrete phenotypes. . . .
Mathematical modeling ex-
plains these results using
hierarchical summation of
cytokine inputs. . . .’’

What’s Next?
Our findings suggest that complex cellular re-

sponses can be effectively described using simple

hierarchical summation rules. This understanding

can provide a general framework for prediction of

responses to signal combinations also in other sys-

tems, with potential applications for generating

therapeutic T cells with improved functionality.
Excess Ribosomes for Increased
Translational Demands
EyalMetzl-Raz,Moshe Kafri, Gilad Yaakov, Ilya Soi-

fer, Yonat Gurvich, and Naama Barkai, Weizmann

Institute of Science

Principles
To duplicate protein content at each division,

growing cells must coordinate production of ribo-

somes with all other cellular proteins. It has long

been appreciated that maximal growth rate is ob-

tained when cells produce the highest amount of

fully active ribosomes necessary for their immedi-

ate growth requirements. Indeed, if produced,

inactive ribosomes will not contribute to growth

but will still consume translational resources of

other cellular proteins.

Do cells function at this limit of full ribosomal us-

age? Classical studies in bacteria suggested that

this may indeed be the case. By contrast, we found

that budding yeast, a model eukaryote, produces

excess ribosomes, so that even during rapid loga-

rithmic growth, a significant fraction (�8%) of its

entire proteome consists of ribosomal proteins

that are not actively translating at a given time

(Metzl-Raz et al., eLife. http://dx.doi.org/10.7554/

eLife.28034). This excess ribosome pool is em-

ployed when translation demands abruptly in-

crease, e.g., during nutrient upshift. This suggests

that yeast ribosome capacity is evolutionarily

tuned not solely toward maximal growth rate but

also toward changing environmental conditions.

‘‘. . .budding yeast. . .pro-
duces excess ribosomes,
so that even during rapid
logarithmic growth, a signifi-
cant fraction (�8%) of its
entire proteome consists of
ribosomal proteins that are
not actively translating at a
given time.’’

What’s Next?
What could be the selective advantage for main-

taining excess inactive ribosomes at the expense

of immediate growth? One possibility is that this

design enables near-instantaneous adaptation to

improved nutrient conditions. Future studies will

probe potential evolutionary benefits of excess

ribosomes and further address how different

organisms resolve this trade-off between fast

adaptation and immediate growth rate.
The Human Pathology Atlas
Adil Mardinoglu, Science for Life Laboratory, KTH–

Royal Institute of Technology; Fredrik Ponten,

Department of Immunology Genetics and Pathol-

ogy, Uppsala University; Mathias Uhlen, Science

for Life Laboratory, KTH–Royal Institute of

Technology

Principles
It is necessary to unveil the underlying molecular

mechanisms involved in the occurrence of individ-

ual tumors for the development of efficient

treatment strategies. We recently generated a

Human Pathology Atlas for protein coding genes

in major human cancers (Uhlen et al., Science

357, eaan2507). We employed powerful systems

biology tools to analyze the transcriptome of 17

main cancer types using data from 8,000 patients

and generated more than 900,000 survival plots

describing the consequence of RNA and protein

levels on clinical survival. We also generated

personalized genome-scale metabolic models for

each cancer patient to identify key genes involved

in tumor growth. Prognostic genes identified for

lung and colorectal cancer were validated at the

protein level in independent, prospective cancer

cohorts using immunohistochemistry. The Pathol-

ogy Atlas is available via an interactive open-ac-

cess database (www.proteinatlas.org/pathology).

‘‘We. . .generated more than
900,000 survival plots
describing the consequence
of RNA and protein levels on
clinical survival.’’

What’s Next?
The systems level approach used to create the

Pathology Atlas demonstrated the potential use

of omics technologies in transforming howmedical

research is performed. The Human Pathology Atlas

and extension of similar efforts on more focused

and clinically relevant cancer patient cohorts may

accelerate the adoption of personalized cancer

medicine. It may also foster the development of

effective cancer drugs that target the identified

driver genes associated with individual tumor

growth.
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Identifying Signatures of Feedback
Sahand Jamal Rahi and Frederick R. Cross, The

Rockefeller University

Principles
Let us treat a biological system like a wrapped gift:

shake it, listen to its contents rattling, and try to

figure out what is inside. For biological systems,

there are, in general, too many different possibil-

ities that give similar responses to the same stim-

ulus for us to make a reliable guess about the

network of molecular interactions. So, we focused

on systems that show adaptation, i.e., that desen-

sitize to a continuous stimulus.

These systems, which are ubiquitous in biology,

must contain incoherent feedforward loops or

negative feedback loops. Can we discriminate

these two fundamental circuit topologies? We

settled on oscillatory on-off stimuli as the simplest

patterns of perturbations that could do the task.

We found two identifying ‘‘response signa-

tures’’: in contrast to incoherent feedforward

loops, only negative feedback loops show period

skipping (responding intermittently to periodic

stimuli), and, generically, only negative feedback

loops have a stable refractory period (the time it

takes the system to resensitize after a stimulus

ends) (Rahi et al., Nat. Methods, published online

28 August 2017. http://dx.doi.org/10.1038/nmeth.

4408). We used these to identify a calcium negative

feedback loop leading to adaptation in the Caeno-

rhabditis elegans olfactory neuron AWA and the

subsystem that stabilizes the cell cycle period

in yeast.

‘‘. . .in contrast to incoherent
feedforward loops, only
negative feedback loops
show period skipping. . .or
have a stable refractory
period. . . .’’

What’s Next?
For the numerous signaling pathways in biology

that are poorly understood, this approach could

bring insight by elucidating the underlying circuit

motif. Also, both signatures (stable refractory

periods and period skipping) are often observed

when researchers stimulate cells without realizing

that they indicate the presence of negative feed-

back loops.
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Bacterial Chassis Strain C1*
Meike Baumgart and Stephan Noack, IBG-1:

Biotechnology, Forschungszentrum J€ulich

Principles
Targeted top-down genome reduction strategies

are considered to have a high potential for

providing robust basic strains for synthetic biology

and industrial biotechnology. In contrast to other

genome reduction projects aiming at a minimal

cell, we want to construct chassis strains for

research and industry with reduced complexity,

while maintaining growth behavior and robustness

of the wild-type. Recently, we created a library of

26 genome-reduced strains of Corynebacterium

glutamicum carrying broad deletions in single

gene clusters without impact on biological fitness.

We proceeded by combining gene cluster dele-

tions, and the final chassis strain C1* carries a

genome reduction of 13.4% (412 deleted genes)

(Baumgart et al., ACS Synth. Biol., published

online August 14, 2017. http://dx.doi.org/10.

1021/acssynbio.7b00261). C1* shows wild-type-

like growth behavior in defined medium with

D-glucose as carbon and energy source. More-

over, C1* proves to be robust against several

stresses (including oxygen limitation) and shows

long-term growth stability under defined and com-

plex medium conditions. Alongside this study, a

large strain library and a revised genome annota-

tion list were generated, offering the opportunity

to screen for irrelevant gene cluster under different

growth conditions and to successively unravel the

function of the still numerous uncharacterized

genes in C. glutamicum.

‘‘Majorgenomeredesign. . . .’’

What’s Next?
As we have already targeted most of the large re-

gions without essential genes, alternative strate-

gies are required to accomplish significant further

genome reduction. Major genome redesign, e.g.,

by joining all genes of a certain pathway in one syn-

thetic gene cluster, is one promising option.

http://dx.doi.org/10.1038/nmeth.4408
http://dx.doi.org/10.1038/nmeth.4408
http://dx.doi.org/10.1021/acssynbio.7b00261
http://dx.doi.org/10.1021/acssynbio.7b00261
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