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Abstract

Growing cells are subject to cycles of nutrient depletion and repletion. A shortage of nutri-

ents activates a starvation program that promotes growth in limiting conditions. To examine

whether nutrient-deprived cells prepare also for their subsequent recovery, we followed the

transcription program activated in budding yeast transferred to low-phosphate media and

defined its contribution to cell growth during phosphate limitation and upon recovery. An ini-

tial transcription wave was induced by moderate phosphate depletion that did not affect cell

growth. A second transcription wave followed when phosphate became growth limiting. The

starvation program contributed to growth only in the second, growth-limiting phase. Notably,

the early response, activated at moderate depletion, promoted recovery from starvation by

increasing phosphate influx upon transfer to rich medium. Our results suggest that cells sub-

ject to nutrient depletion prepare not only for growth in the limiting conditions but also for

their predicted recovery once nutrients are replenished.

Author summary

Cells must have sufficient nutrients in order to perform their different functions. This

becomes particularly critical when the nutrient composition in their environment

changes. To accommodate such changes, cells have evolved specialized adaptation path-

ways that sense the nutrients available in their surrounding and adapt their gene expres-

sion and protein functions accordingly. It is typically assumed that these different

starvation pathways have been optimized to enable growth in conditions in which nutri-

ents are limiting. We reasoned, however, that since starvation periods are necessarily fol-

lowed by nutrient retrieval, the starvation response may further function to optimize the

recovery from starvation once nutrients are replenished. In the present study, we show

that this is indeed the case for the well-studied phosphate starvation pathway in budding

yeast. Using a combination of transcription profiling and high-resolution competition

assays, we have characterized, at high temporal resolution, the growth-fitness advantage

cells gain from activation of the phosphate starvation program when they enter into star-

vation and also when they exit starvation when nutrient is replenished. We find that the

cells activate the starvation program in 2 temporal waves. The first wave is activated at

intermediate depletion that is not yet limiting for growth, while the second wave is
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activated when phosphate becomes limiting. Of note, we provide evidence that the early

response promoted recovery from starvation by increasing phosphate influx. Our results

corroborate the notion that cells have evolved not only to optimize their instantaneous

growth but also to prepare for future, predicted challenges.

Introduction

Growing cells require an influx of nutrients from their environment to sustain metabolic activ-

ity. Depletion of essential nutrients arrests cell growth until the nutrients are replenished [1].

Prior to this arrest, a starvation program that regulates the expression and activity of multiple

genes and proteins is activated. This starvation program increases the level of internal nutrient,

e.g., by expressing high-affinity transport, mobilizing stored nutrients, or scavenging the limit-

ing nutrient from internal or external sources [2]. This starvation program does not eliminate

growth arrest but only delays its onset: a growing population will still deplete the available

nutrient and arrest, but this arrest will be postponed by a limited number of generations [3,4].

Once the depleted nutrient is replenished, cells reenter the cell cycle and begin to prolifer-

ate. Return to growth is not immediate but follows a lag time during which cells adjust to the

rich medium. Since growth is exponential, minimizing the lag time would provide cells with a

significant competitive advantage. Indeed, subjecting cells to continuous cycles of nutrient

depletion and replenishment selects for cells with accelerated recovery [5].

We hypothesized that the starvation program activated when nutrients are depleted pre-

pares cells not only for growth in the limiting environment but also for their subsequent recov-

ery once nutrients are replenished. To examine this hypothesis, we focused on the phosphate

starvation program in budding yeast, whose molecular basis has been characterized in detail.

Cells transferred to a medium containing low phosphate induce dozens of genes. Those genes

regulate intracellular phosphate levels by enabling high-affinity phosphate transport [6–8],

phosphate mobilization in and out of vacuolar storage [9,10], and phosphate scavenging from

different intra- and extracellular sources (Fig 1A) [11–14]. Induction of all phosphate-respon-

sive genes depends on the transcription factor Pho4. When intracellular phosphate levels are

reduced, Pho4 is dephosphorylated and enters the nucleus to activate its target genes [15–19].

We previously suggested that the phosphate starvation program promotes not only growth

in phosphate-limiting conditions but also recovery from starvation, based on our analysis of

cells that constitutively express PHO84, the high-affinity phosphate transporter [22]. When

transferred to media containing low phosphate levels, the PHO84-constitutive cells induced

the starvation program with a delay relative to wild-type cells, and when transferred back to

rich media, these cells showed a longer lag time and were outcompeted by wild-type cells.

Notably, the impaired recovery was rescued by partially activating Pho4 also in nonstarving

cells, suggesting that optimal recovery depends on the proper, early induction of the starvation

program, as seen in wild-type cells. Still, the contribution of the phosphate starvation program

to cell growth has not been measured directly.

In this study, we set to quantify the contribution of the phosphate starvation program to

cell growth in limited phosphate and upon recovery from starvation. We reasoned that this

contribution may depend on the kinetics by which phosphate is depleted. In particular, grad-

ual depletion of phosphate may provide cells with enough time to prepare for the upcoming

limitation, activating the starvation program before arresting cell growth. We therefore consid-

ered different kinetics of phosphate depletion and followed, at high temporal resolution, the

gene expression and growth rate of wild-type cells and of mutant cells that do not properly
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Fig 1. Two-wave induction of the phosphate starvation response. (A) Schematic illustration of the phosphate starvation response:

Reduction in internal phosphate leads to the nuclear localization of the transcription factor Pho4 and the induction of its target genes. Genes

induced by Pho4 include high-affinity transporters (e.g., PHO84) and an inhibitor of low-affinity transporters (SPL2), genes involved in

phosphate mobilization in and out of vacuole storage as PolyP (e.g., PHM3), and phosphatases, which scavenge phosphate from molecules

inside or outside the cell. (B) Cells grow for a limited number of generations following transfer to media containing different low phosphate

levels: Shown is the temporal increase in cellular density (measured by optical density [OD]) following transfer to low-phosphate media, as
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activate the starvation program. We find that cells activate the starvation program sequentially:

the first activation wave is seen when phosphate is only partially depleted and before cell

growth is reduced. This phase may serve as a preparation period, as deleting PHO4 does not

affect cell growth at this phase. This initial activation is followed by a second wave of expres-

sion, observed at the time when cell growth begins to slow down. At this stage, deletion of

PHO4 further reduces growth rate. Notably, we show that the early transcription wave contrib-

utes to the recovery from starvation by increasing phosphate influx once nutrients are replen-

ished. We propose that cellular signaling is tuned not only for optimizing instantaneous cell

growth but also for preparing cells for predictable future needs.

Results

A 2-step induction of the phosphate starvation response during growth in

low-phosphate media

The phosphate starvation program in budding yeast is activated when intracellular phosphate

levels are reduced. The kinetics by which the starvation program is activated therefore depends

on the rate by which internal phosphate is depleted. To monitor different kinetics of phosphate

depletion, we inoculated cells in media containing different low-phosphate levels, ranging

from 0 mM to 0.5 mM of inorganic phosphate (Pi). Cells incubated in these media grew for a

different number of generations, ranging from approximately 8 generations when incubated

to 0.5 mM Pi to only approximately 3.5 generations when incubated in medium lacking phos-

phate (Fig 1B).

We measured the growth rate of the cells following their transfer to the low-phosphate

media and profiled their transcription response at multiple time points following the transfer,

as indicated (Fig 1B and 1C). To examine the starvation program, we first focused on the

induction of Pho4-target genes (Fig 1C and S1A and S1B Fig). Pho4-targets were defined by

comparing gene expression in cells lacking PHO4 to that in cells that express a constitutive

strong PHO4 allele (Materials and methods) and were consistent with previous reports (S1A

Fig) [9,19]. As expected, the starvation program was induced with different temporal kinetics,

depending on the phosphate level in the inoculation medium. Cells transferred to a medium

containing 0.5 mM Pi, for example, did not activate Pho4-target genes during the approxi-

mately 9 initial hours, showing a partial induction only at the 24.7-hour time point. By

indicated (Materials and methods). The data are the mean and standard error of 2 replicates. (C–D) Sequential induction of the phosphate

transcription response: Wild-type (WT) cells were transferred from rich medium into media containing the indicated low Pi level and followed

for 24.7 hours (Materials and methods). Samples for RNA sequencing were taken at the indicated time points. Shown in (C) is the

log2(expression) change in Pho4-target genes, stress response genes (Stress), and genes coding for ribosomal proteins (Protein Synthesis),

as defined in [20] (see Materials and methods and S2 Data). Data were normalized as described in the Materials and methods, and values

under detectable levels (not a number [NaN]) are depicted in grey. Vertical lines indicate the second transcription wave, as defined by

clustering (using k-means) of the Pearson correlation matrix, shown in (D). Note that when transferred to 0.06 mM Pi, cells transiently

induced the second wave approximately 3–4.5 hours following the transfer, followed by a stable induction at approximately 7 hours after the

transfer. This transient induction is likely due to the double-feedback design of the system, as we showed [21]. The reduction in growth rate

(see E–F below) is observed already with first induction of the second transcription wave. The data in (C–D) are from 1 replicate. Additional

biological (and experimental) replicates for growth in 0.06 mM and 0.2 mM Pi are found in Fig 3C and S1C Fig, respectively, and for 0 mM Pi,

see [21]. For further supporting data for (C), see (E). See S1A and S1B Fig for definition of Pho4-target genes. (E–F) Phosphate becomes

growth limiting concomitant with the induction of the second transcription wave: The PHO84p-Venus reporter is up-regulated following

transfer of cells to low-phosphate media, as indicated (E). The cell growth rate was calculated by the logarithmic slope of the OD curve,

shown in (B), and is plotted as a function of reporter expression (F). To control for density-dependent effects, the growth rate was normalized

by that of cells transferred to rich phosphate medium (Materials and methods). The data in (E–F) are the mean and standard error of 2

replicates. Note that growth rate begins to decrease when the PHO84p-Venus reporter crosses a given threshold, independently of the

incubating conditions. This crossing of the activation threshold coincides with the time at which the second transcription wave is induced, as

defined by clustering (S1E Fig). See S1D Fig for the normalized growth rate as a function of time. The raw data for (B, E–F) are available in

S1 Data, and those for (C–D) are in S2 Data. Pi, inorganic phosphate; WT, wild type.

https://doi.org/10.1371/journal.pbio.2002039.g001
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contrast, cells transferred to a medium lacking any phosphate induced Pho4-target gene

expression practically immediately upon the transfer (Fig 1C).

Previous studies reported that cells transferred to medium lacking phosphate activated

the starvation program in 2 sequential waves [19,21,23]. To examine whether this sequential

induction is seen also in our data, we measured the similarity in the expression response at

different time points following the transfer, as defined by the Pearson correlation (Fig 1D

and S1C Fig). Indeed, 2 waves of transcription response were observed. The temporal delay

between the 2 waves varied depending on the incubating conditions, ranging from approxi-

mately 2 hours in cells transferred to medium lacking phosphate to approximately 9.5 hours in

cells transferred to medium containing 0.2 mM Pi (Fig 1C and 1D). This differential kinetics

reflected the delayed induction of the second transcription wave. By contrast, the first tran-

scription wave was induced practically immediately upon transfer to all media containing low

Pi levels < 0.5 mM. The 2 waves differed primarily by the strength of gene induction. At the

first wave, most (but not all) of the Pho4-target genes were moderately induced. At the second

wave, the induction of these genes became stronger, and some additional Pho4-targets, not

induced in the first wave, were now up-regulated (Fig 1C).

Budding yeast activate a characteristic large-scale transcription program termed the envi-

ronmental stress response (ESR) when subjected to a variety of environmental stresses [24]. To

examine whether this response is activated also in our data, we considered the group of stress

response genes as defined in [20] (see Materials and methods). We noted that this response

was not activated immediately upon transfer to low-phosphate media but was observed con-

comitant with the second wave of Pho4-target gene induction. Also at this time, cells down-

regulated the expression of genes coding for ribosomal proteins and ribosome-associated func-

tions (Fig 1C).

The synchronization of the stress response with the second wave of Pho4-target induction

suggested to us that it is at this point that phosphate becomes growth limiting. To examine

this, we monitored cell growth following the transfer. Cells maintained rapid growth rate dur-

ing the initial stages of incubation, independent of the level of phosphate in the inoculation

medium, but began to reduce their growth only at a later stage (Fig 1B). To comonitor growth

rate and the induction of Pho4-target genes, we used cells that express a well-established

reporter: PHO84 promoter-driven Venus (PHO84p-Venus) [25]. PHO84 is a Pho4-target gene

that encodes for the high-affinity phosphate transporter. Upon transfer to low-phosphate

media, PHO84 expression is induced as part of the first transcription wave and is further up-

regulated when the second transcription wave is activated (cf. Fig 1A). Induction of the

PHO84p-Venus reporter was seen immediately upon transfer to low-phosphate media (<0.5

mM Pi), and its levels continued to increase in time as phosphate was further depleted, with

different kinetics depending on the incubation conditions (Fig 1E). Notably, comparing cell

growth rate with reporter induction, we observed that cells began to reduce their growth rate

when the reporter crossed a particular activation threshold, independent of the initial low-

phosphate levels into which the cells were incubated or of the time of incubation (Fig 1F). Fur-

ther, this activation threshold coincided with the induction of the second wave of Pho4-target

gene induction (S1E Fig). We conclude that cells induce the initial transcription wave when

phosphate levels are reduced but are not yet limiting for growth. In contrast, the second tran-

scription wave is induced when intracellular phosphate becomes growth limiting.

Contribution of the starvation program to growth in low-phosphate media

As mentioned above, the group of Pho4-targets induced upon transfer to low-phosphate

media includes multiple genes that regulate the availability of internal phosphate, including
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high-affinity transporters (PHO84 and PHO89), genes that mobilize phosphate vacuolar stor-

age as PolyP (PHM1-5), and phosphatases that can scavenge phosphate from other molecules

inside or outside the cells (e.g., PHO5, PHM8, and PHO11). Induction of these genes could

therefore promote growth in low-phosphate media. To quantify the contribution of this tran-

scription program to cell growth, we considered 2 mutants that cannot activate the pathway: a

strain that lacks the transcription factor Pho4 and a strain that lacks the Pho4 activating pro-

tein, Pho81. We compared the growth rate of the mutant and wild-type cells using a growth-

competitive assay. For this assay, we labeled wild-type cells using a fluorescence marker

mCherry, driven by the constitutively strong TEF2 promoter (Fig 2A). When mixed with unla-

beled cells, the fraction of labeled (wild-type) cells in the population was measured using flow

cytometry. To monitor the activation of the starvation program, we further engineered the

cells to express PHO84p-Venus and monitored its induction using flow cytometry as well (Fig

2A). mCherry and/or Venus reporter expression did not detectably affect growth rate in our

experimental conditions (S2A and S2B Fig).

Mutant and fluorescently labeled wild-type cells were coincubated in media containing

different phosphate levels, and the fraction of wild-type cells in the population was mea-

sured periodically following this incubation, as cells grew and further depleted the phos-

phate (Fig 2B). Initially, the pathway-defective mutant Δpho4 or Δpho81 grew as well

as wild-type cells (Fig 2B and S2D Fig). Wild-type cells began to outcompete the mutants

only after a delay, which varied depending on the level of phosphate in the incubating

media. For example, when incubating the cells in no-Pi or in 0.2 mM Pi, the fraction of

mutant cells began to decrease only around 2 hours or around 8.5 hours after incubation,

respectively.

The PHO84p-Venus reporter was induced practically immediately upon transfer of wild-

type cells to low-phosphate media (<0.5 mM Pi) and continued to increase with time (S2C

Fig), as described above (Fig 1E). Notably, in all conditions, the time at which the frequency of

mutant cells in the mixed population began to decrease coincided with the time at which the

PHO84p-Venus reporter reached a given activation threshold level, independently of the incu-

bating conditions (Fig 2C and S2E Fig). This time coincided with the second wave of Pho4-tar-

get gene induction and the time at which wild-type cells began to reduce their growth rate (Fig

1F and S1E Fig). Therefore, induction of Pho4-target genes promotes growth in low-phosphate

media, but only from the onset of the second wave of gene induction, the time at which phos-

phate becomes limiting for growth.

We next examined mutants that express the PHO regulon constitutively (expressing the

PHO4SA12346 allele [19] or with PHO80 deleted). Constitutive strong activation of Pho4-target

genes reduced growth in rich medium and when phosphate levels were low but not yet growth

limiting. By contrast, this constitutive strong activation promoted growth once phosphate

became growth limiting (Fig 3A–3D and S3A–S3D Fig). Interestingly, the phenotypic effects

of the PHO4SA12346 alleles were fully dependent on the PHM3 gene, which mobilizes phos-

phate into vacuolar storage [10], suggesting that the reduced growth rates in both rich and

intermediate phosphate conditions are explained by transferring too much phosphate into

storage. This excessive storage promotes growth once phosphate becomes growth limiting (Fig

3D–3G).

Taken together, we find that the initial induction of Pho4-target genes occurs before phos-

phate becomes growth limiting and that Pho4-target induction does not contribute to cell

growth during this phase. The phosphate starvation program starts contributing to growth

only when phosphate becomes growth limiting, a time that is marked by the second wave of

Pho4-target gene induction and up-regulation of the stress response.
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Fig 2. The starvation program promotes growth in low phosphate. (A) Experimental scheme: Cells deleted

of PHO4 were mixed with fluorescently labeled wild-type cells and were coincubated in different low-Pi media.

Samples were taken at different times following the incubation and analyzed using flow cytometry to define the

relative fraction of Δpho4 cells (cells not expressing mCherry) and the activation of the starvation program

reporter PHO84p-Venus in individual cells. (B–C) The early phase of Pho4-target gene induction does not

contribute to cell growth: The relative abundance of Δpho4 cells in the mixed culture is shown as a function of

time (B) and as a function of the PHO84p-Venus reporter induction in wild-type cells (C). The data in (B–C) are

the mean and standard error of 2 replicates. The raw data are available in S4 Data. Note that, regardless of the

inoculation conditions, Δpho4 cells begin to reduce in frequency when the reporter level increases beyond the

same activation threshold at which wild-type cells begin to reduce their growth (compare Fig 1F) and induce the

second wave of Pho4-target gene expression (compare S1E Fig). See S2C–S2E Fig for the temporal induction of

the reporter and a similar analysis of Δpho81 cells. Pi, inorganic phosphate; WT, wild type.

https://doi.org/10.1371/journal.pbio.2002039.g002
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Fig 3. Constitutive activation of Pho4-target genes impacts cell growth. (A–D) Constitutive expression Pho4-dependent genes promote growth at

low phosphate: Δpho80 cells and cells expressing the constitutive PHO4SA12346 allele were mixed with wild-type cells (either wild-type or mutant cells were

mCherry labeled, respectively) and incubated in media containing different low-phosphate levels, as in Fig 2A. The (log2) relative abundance of Δpho80

cells in the mixture at different times following the incubation is shown in (A) as a function of time (see also S3D and S3E Fig for PHO4SA12346 and

PHO4SA1234 cells). (B) and (D) depict the growth rate of Δpho80 and PHO4SA12346 cells as a function of reporter expression (PHO84p-Venus) in the wild-

type cells, respectively. Note that, independently of the incubation conditions, the mutant cells begin to outcompete the wild-type cells when reporter

activation in wild-type cells crosses the same threshold value at which wild-type cells become limiting for growth (Fig 1F), Δpho4 deleted cells begin to be

outcompeted by wild-type cells (Fig 2C), and wild-type cells activate the second wave of Pho4-target gene expression (S1E Fig). The data in (A–B) are the

mean and standard error of 3 replicates. (C) Temporal gene expression in cells expressing a constitutive Pho4 allele (PHO4SA12346), as in Fig 1C. Note

that PHO4SA12346 strongly expresses the Pho4-target genes even in high Pi levels, which is consistent with previous reports [19]. The data in (C) are from

1 replicate, but see S3B and S3C Fig for related data showing equivalent behavior upon transfer into low Pi of 0.2 mM and 0.5 mM, respectively. (E–G)

The growth phenotype of the Pho4-constitute strain depends on the mobilization of phosphate into storage: (E–F) same as (D), for the indicated strains.

The data in (D–F) display 1 replicate; see (G) for additional supporting data. (G) The experiments in (D–F) were repeated using a variety of starvation

media, and the fitness difference of mutant and wild-type cells was measured following approximately 24 hours incubation in low-Pi media. This fitness

difference is shown as a function of the initial phosphate level in the starvation media. The data in (G) are the mean and standard error of 3 replicates. As

described, Phm3 is a subunit of the vacuolar transporter chaperone complex, required for the storage of phosphate as polyP in the vacuoles. See S4E–

S4I Fig for recovery of the above mutants from low Pi. The raw data for (A–B and D–F) are available in S4 Data. The raw data for (C) and (G) are available

in S2 and S5 Data, respectively. NaN, not a number; Pi, inorganic phosphate; WT, wild type.

https://doi.org/10.1371/journal.pbio.2002039.g003
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Contribution of the starvation program to recovery when phosphate is

replenished

We asked whether, in addition to its role during growth in limited phosphate, the starvation

program promotes recovery from starvation once phosphate is replenished. We reasoned

that this contribution may depend primarily on the first wave of Pho4-target gene induc-

tion, since this wave is activated before phosphate becomes growth limiting and before it

is needed for maintaining maximal growth rate. This early induction could prepare cells

for upcoming starvation and further contribute to their recovery. We therefore denote the

time between the induction of the first and second transcription waves as the “preparation

phase.”

Cells that are incubated in media containing intermediate phosphate show a preparation

phase that is prolonged relative to cells incubated in medium containing no phosphate (Fig

1C). If preparation promotes recovery, cells with prolonged preparation will recover faster

than cells incubated directly in a no-phosphate medium. To examine this, we incubated cells

into media containing different levels of phosphate for 21 hours, transferred them back to rich

medium, and measured the lag time before growth was recovered. As predicted, the lag time

decreased monotonically with increasing levels of phosphate in the incubating media (Fig 4A).

In particular, cells incubated directly into medium lacking phosphate showed the longest lag

time before resuming growth.

To directly examine whether the starvation program promotes recovery, we examined the

Δpho4 and Δpho81mutants that do not activate the pathway. This was done using a competi-

tion assay: fluorescently labeled wild-type cells containing the constitutive TEF2p-mCherry

marker were mixed with mutant cells, incubated in low-phosphate media for 24.7 hours, and

then transferred back to rich medium. The fraction of wild-type cells was measured at subse-

quent times following the transfer to rich medium using a flow cytometer. The gene expression

profile of wild-type cells was monitored in parallel to define the kinetics by which cells down-

regulate the expression of Pho4-target genes.

Replenishing phosphate rapidly repressed Pho4-target genes (Fig 4B). Still, wild-type

cells resumed growth faster than pathway-deficient mutants (Fig 4C and S4A Fig). This was

observed in cells that showed a prolonged preparation time (brought to starvation following

incubation in media containing an intermediate level of phosphate). In fact, in cells incubated

in 0.2 mM Pi, the starvation program contributed to recovery more than to growth in the low-

Pi medium itself (Fig 2B versus Fig 4C and S2D Fig versus S4A Fig). By contrast, the starvation

program did not detectably contribute to the recovery of cells that were incubated directly in

very low or no-phosphate medium, conditions in which preparation time was limited (Figs 4C

and 1C and S4A Fig). Note that when incubated in 0.5 mM Pi, the cells arrested before becom-

ing phosphate limited (Fig 1B and S1D Fig), resulting in full dispensability of Pho4 both in the

low-phosphate medium and during recovery (Figs 2B and 4C and S2D and S4A Figs). We con-

clude that the starvation program contributes to cell recovery from phosphate limitation, but

only in conditions that introduce a significant delay between the induction of the first and sec-

ond waves of Pho4-targeted genes.

Phosphate influx is limiting during recovery in rich media

The starvation program could promote recovery from starvation by limiting phosphate toxic-

ity. Indeed, upon recovery, cells are subject to a large, sudden influx of phosphate, which may

be toxic. To examine whether phosphate toxicity limits recovery of the pathway defective

Δpho4 or Δpho81 cells, we constitutively expressed the high-affinity transporter PHO84
(PHO84c) in these backgrounds. We reasoned that this constitutive expression will increase
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Fig 4. The starvation program promotes recovery once phosphate is replenished. (A) Recovery time depends on the

conditions leading to starvation: Cells were incubated in media containing different low phosphate levels and maintained in

the starvation conditions for 21 hours before being transferred back into a rich medium. The number of generations that cells

underwent 3 or 5.7 hours after the transfer to rich medium is shown as a function of the phosphate level in the incubating

media. The data in (A) are the mean and standard error of 2 replicates. (B) Pho4-target genes are rapidly down-regulated

when phosphate is replenished: Recovery expression profiles of cells grown for 24.7 hours in low-Pi media (see Fig 1C) and
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phosphate uptake and toxicity, further delaying recovery from starvation. In contrast to this

expectation, constitutive expression of PHO84 did not abrogate but rather compensated for

the delayed recovery of Δpho4 and Δpho81mutants (Fig 4D and 4E and S4B Fig; see S2F and

S2G Fig for growth in low Pi). This refutes the hypothesis that pathway activation is needed

to prevent toxicity upon phosphate replenishment but suggests that it is required to promote

phosphate influx. Indeed, to resume growth, cells must synthesize a large amount of RNA,

likely requiring an increased phosphate influx.

If phosphate influx is limiting during recovery, cells without the high-affinity phosphate

transporter (Δpho84 cells) will exit starvation with a delay. To test that, we examined the

recovery time of Δpho84 cells (Fig 4F–4I and S4C and S4D Fig). The starvation program in

Δpho84 cells was maintained active for at least 10 hours following phosphate replenishment,

contrasting its rapid down-regulation in wild-type cells (Fig 4H–4I and S4D Fig) and con-

firming that the high-affinity transporter largely contributes to phosphate influx during

recovery. As was expected when phosphate influx limits recovery, the growth of those cells

was severely delayed (Fig 4F–4G and S4C Fig). Further, the impaired recovery of Δpho84
cells was rescued by deleting SPL2 (Fig 4F–4I and S4C and S4D Fig). As one of the Pho4-

target genes, SPL2 is induced in low-phosphate media and down-regulates the activity of

Pho90 (see S2H–S2J Fig for growth in low Pi). Deletion of SPL2 therefore maintains the

active status of the low-affinity transporter, leading to a higher phosphate influx, which we

suggest explains the cells’ faster recovery. This recovery is still not as fast as wild-type cells,

which can utilize both the low- and high-affinity transporters during recovery (Fig 4F–4I

and S4C and S4D Fig).

Taken together, our results suggest that phosphate influx is limiting during the recovery of

cells from phosphate starvation. Pho4-target gene induction may therefore promote recovery

by facilitating the increase in internal phosphate upon recovery.

recovered in rich medium. The data in (B) are from 1 replicate. Additional replicates for recovery from 0.2 mM and 0.06 mM

Pi are found in Fig 6E and S6E Fig, respectively. See S4 Data for related experiments using a reporter gene. (C) The

starvation program promotes recovery: Competition experiments, as shown in Fig 2, were performed to compare the growth

of Δpho4 and wild-type cells following recovery in rich medium. Wild-type and Δpho4 cells were coincubated in media

containing different levels of low phosphate, grown to saturation, and maintained in the starvation conditions for 24.7 hours

before being transferred back into rich medium. The (log2) relative abundance of Δpho4 cells at different times following

return to rich medium is shown. Note that Δpho4 cells are outcompeted by wild-type cells during recovery from starvation

that was induced by incubation in media containing intermediate phosphate (e.g., 0.2 mM Pi). These conditions introduce

the longest time gap between the first and second wave of Pho4-target gene induction (“preparation” time). The data in (C)

are the mean and standard error of 2 replicates. See S4A Fig for similar experiments using Δpho81 deleted cells. (D, E)

Constitutive expression of PHO84 partially rescues the recovery phenotype of Δpho4 cells: Experiments as shown in (C)

were repeated for cells that constitutively express the PHO84 transporter (PHO84C) in a wild-type or Δpho4 background.

The (log2) relative abundance of mutant cells during recovery from starvation induced by incubating in media containing 0.2

mM Pi is shown in (D). In (D), the mean of 2 replicates is shown for Δpho4, and 1 replicate is shown for PHO84C with and

without Δpho4. These data are supported by the experiments shown in (E) and Fig 5B. (E) The experiments in (D) were

repeated using a variety of starvation media, and the fitness difference of mutant and wild-type cells was measured following

24.7 hours of incubation in rich medium. This fitness difference is shown as a function of the initial phosphate level in the

starvation media. Note that deletion of PHO4 impaired recovery when cells were first incubated at intermediate phosphate

levels (around 0.2 mM Pi), allowing sufficient preparation time, and that constitutive expression of PHO84 partially rescued

this phenotype. The data in (E) are the mean and standard error of 3 replicates. See S4B Fig for similar experiments using

Δpho81 cells. (F–I) Phosphate influx limits recovery from starvation: Competition experiments as in (C) were repeated for

cells of the indicated genotype (F–I). Shown are the (log2) relative abundance of the indicated mutant strains (F–G) and the

level of the PHO84p-Venus reporter in the mutants and wild-type cells (H–I) during competitive growth. In (F, H) are shown

several time points within the first 10 hours of recovery (into 20 mM Pi), and those after 9 hours of recovery into 20 mM Pi are

shown in (G, I). The data in (F, H) are from 1 replicate and are supported by data in (G, I), which show the mean and

standard error of 2 replicates. See (S4C and S4D Fig) for recovery into a high Pi of 7.3 mM Pi. The raw data for (C, D, and F–

I) are available in S4 Data. The raw data for (A, B, and E) are available in S1, S2 and S5 Data, respectively. NaN, not a

number; Pi, inorganic phosphate; WT, wild type.

https://doi.org/10.1371/journal.pbio.2002039.g004
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Fig 5. The recovery phenotype of the PHO84-constitutive strain depends on the Pho4-target gene induction. (A) Constitutive

expression of the high-affinity PHO84 transporter limits recovery from phosphate starvation: Competition experiments are the same as in Fig

4C but for cells that express PHO84 using the constitutive TDH3 promoter (PHO84C). Note that PHO84C cells recover with a delay and that

the delay is particularly significant when cells are recovered from a medium containing intermediate phosphate levels (0.2 mM Pi). During

growth in 0.2 mM Pi, wild-type cells have a long preparation time, while PHO84C triggers Pho4-target genes at a delay; see S5A Fig. The

data in (A) are from 1 replicate; see (B) for additional supporting data. (B) The recovery phenotype of PHO84C depends on Pho4-targeted

gene expression: The experiments in (A) were repeated for PHO84C and for PHO84C with Δpho4 cells. Shown is the (log2) relative

abundance after 9 hours of recovery into 7.3 mM Pi. The data in (B) are the mean and standard error of 3 replicates. (C–D) The recovery

phenotype of PHO84C is partially rescued by increasing the phosphate influx during recovery: Experiments performed as in (A) for the

indicated strains and for recovery (from 0.2 mM Pi) using rich media containing a higher level of phosphate (20 mM compared to 7.3 mM Pi).

PHO90C denotes constitutive expression of the low-affinity transporter, while Δspl2 refers to the deletion of the Pho90 inhibitor SPL2. Both

mutations were added to the PHO84C strain, and the double mutants were competed against wild-type cells. The (log2) relative abundance

after 9 hours of recovery as in (B) is shown in (C), while expression profiles of genes as in Fig 4B are shown in (D). The data in (C) are the

mean and standard error of 2 or 3 replicates. The data in (D) are from 1 replicate. Additional data for recovery of PHO84C strain (from 0.06

mM Pi) are found in S6E Fig. The conclusions of (D) are further supported by the Venus reporter (an independent experiment that uses an

independent construct); see S4 Data. The raw data for (A–C) are available in S4 Data. The raw data for (D) are available in S2 Data. NaN, not

a number; Pi, inorganic phosphate; WT, wild type.

https://doi.org/10.1371/journal.pbio.2002039.g005
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Delayed induction of Pho4-target genes delays recovery by decreasing

phosphate influx

Our analysis above mapped the contribution of the starvation program to cell recovery to the

first wave of Pho4-target genes, induced before phosphate becomes limiting. Further, we

showed that this contribution is pronounced only when the duration of this first wave is suffi-

ciently long. We previously showed that constitutive activation of the high-affinity transporter

PHO84 leads to the delayed induction of the first transcription wave and shortens the delay

between the 2 waves. Consistent with this first wave being important for recovery, PHO84C

cells recover with a delay, and this phenotype is rescued by partial activation of the starvation

program using the weak PHO4SA1234 constitutive allele, which may mimic the first induction

wave [22]. We recapitulated these results here and confirmed that delayed recovery was appar-

ent when incubating cells in conditions that enable a long preparation phase in wild-type cells

Fig 6. Lab evolution selects for PHO84 mutations that rescue the recovery phenotype of PHO84C. (A) Experimental scheme: 16 independent

lines expressing constitutively high levels of PHO84 were subjected to 10 cycles of alternated growth in high and low phosphate for a total of 300

generations. (B) PHO84 mutations identified in selected lines: Single-cell isolates (evolved for approximately 150 and approximately 300 generations)

were selected from the 10 cultures showing improved recovery and were sent for whole-genome sequencing. All isolates showing an adaptive

phenotype contained mutations in the Pho84 open reading frame (ORF), with 56 out of the 60 identified mutations mapped to the same amino-acid

substitution (L74F). (C–E) Selected PHO84 mutation rescues the recovery phenotype: The PHO84 mutations identified in the selected stains were

introduced into the wild-type allele and their effect on the growth in low Pi and on the recovery phenotype was examined when PHO84 was expressed

at wild-type levels or constitutively (both the constitutive overexpression and the evolved mutations were introduced into PHO84 endogenous site).

Shown is the recovery of the constitutive strain with and without the amino-acid substitution (Pho84-L74F(ttG/ttC)) following 24.7 hours incubation in 0.2

mM Pi (C, D) and the corresponding pho4-target gene expression during recovery (E). Note the rescue of the recovery phenotype and the immediate

down-regulation of pho4-target genes. See S6B–SBJ Fig for the growth in low-phosphate media and recovery phenotypes of the selected mutations:

Pho84-L74F(ttG/ttC), Pho84-L259P, and Pho84-V383L. The data in (C) are from 1 replicate; see (D) for additional supporting data. The data in (D) are

the mean and standard error of 3 replicates. The data in (E) are from 1 replicate. Additional data as in (E) for recovery (from 0.06 mM Pi) are found in

S6E Fig. The conclusions of (E) are further supported by experiments with the Venus reporter (see S4 Data). The raw data for (C–D) are available in S4

Data. The raw data for (E) are available in S2 Data. Gen, generations; NaN, not a number; Pi, inorganic phosphate; WT, wild type.

https://doi.org/10.1371/journal.pbio.2002039.g006
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(0.2 mM Pi) but was less pronounced when preparation was short or absent (no Pi, Fig 5A and

5B and S5A–S5D Fig).

Several additional results support the hypothesis that the impaired recovery of the PHO84-

constitutive cells is due to an insufficient phosphate influx upon recovery. First, the recovery

phenotype was partially rescued by increased phosphate in the recovery media (20 mM com-

pared to 7.3 mM Pi in synthetic complete (SC) medium, Fig 5C). It was also rescued by an

SPL2 deletion and by constitutive expression of the low-affinity transporter PHO90 (Fig 5C).

Further, the PHO84-constitutive cells maintained the starvation program as partially active for

a considerable time following phosphate replenishment, indicating low internal phosphate.

Notably, Pho4-target genes were in fact repressed rapidly upon phosphate replenishment but

were also rapidly reinduced (Fig 5D). As we have shown before, this oscillatory behavior char-

acterizes cells that are transferred from deep to intermediate internal phosphate limitation

conditions [21]. This phenotype was again rescued when transferring cells into 20 mM Pi, in

Δspl2 deleted cells and in cells that constitutively express PHO90 (Fig 5D). We conclude that

the recovery phenotype of PHO84-constitutive cells is due to an insufficient phosphate influx

upon recovery.

The PHO84-constitutive phenotype is alleviated by mutations that

increase phosphate influx

As a complementary approach for examining the deficiency of PHO84-constitutive cells, we

subjected these cells to cycles of starvation and recovery, with the intention of selecting com-

pensatory mutations. Sixteen independent lines were followed for approximately 300 genera-

tions, corresponding to 10 cycles of phosphate depletion and replenishment (Fig 6A). In 10

cultures, improved recovery was observed, and single-cell colonies isolated from these cultures

were sent for whole-genome sequencing. Notably, all strains showing an adaptive phenotype

were mutated in the PHO84 gene. Further, 56 of the 60 individually selected cells led to the

same substitution (L74F) of an amino acid located in the first transmembrane domain (Fig 6B)

[6]. This mutation, as well as the 2 other amino acid substitutions identified, is found in vari-

ous PHO84 homologs (S6A Fig).

To verify the causality of the identified mutations, we introduced them into a wild-type

PHO84 allele and a PHO84-constitutive allele. The impaired recovery of PHO84-constitutive

cells was rescued (Fig 6C–6E and S6E–S6J Fig), and the mutation further improved the growth

of both the wild-type and the constitutive strains in low-phosphate media, suggesting that it

supports higher phosphate influx (S6B–S6D Fig).

Discussion

Cells respond to the depletion of nutrients by changing the expression and activities of a large

number of genes and proteins. Previous studies implicated cellular starvation programs in

optimizing cell growth and survival in limiting condition [26–28]. Our results suggest that the

starvation programs can also promote the recovery of cells once nutrients are replenished.

The phosphate starvation program in budding yeast was investigated extensively, revealing

general principles of nutrient homeostasis [12,19,29–31]. Yet, while the molecular properties

of this response are well understood, its contribution to cell growth remained relatively unex-

plored. Here, we closed this gap by following, at high temporal resolution, the growth of wild-

type and mutant cells at different stages of phosphate depletion and recovery. We found

that cells activate the starvation response before this response is required for growth. In fact,

expression of Pho4-target genes is observed before cells reduce their growth rate or show any

signs of stress such as expression of stress-responsive genes or down-regulating genes coding
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for ribosomal proteins. We propose that this initial response serves as a preparation phase,

allowing cells to prepare for the upcoming limitation and for their subsequent recovery. As

phosphate levels are further depleted, phosphate becomes limiting for growth, at which stage a

second wave of Pho4-target genes is induced, concomitant with the induction of the general

stress response. At this point, the starvation program starts contributing to cell growth. It is

interesting that induction of the general stress response is delayed and becomes weaker in cells

that are deleted of Pho4 and thereby do not activate the starvation program (S3A–S3C Fig),

suggesting an inherent connection between this general stress response and the more specific

induction of Pho4-target genes.

Most notably, we find that the phosphate starvation program also promotes recovery from

starvation. As we show, recovery times might be limited by phosphate influx during the recov-

ery, and the starvation program may promote this influx. Further, this role of the starvation

program appears to depend on the early wave of Pho4-target genes, induced before phosphate

becomes growth limiting.

Our results suggest that nutrient homeostasis circuits have evolved not only for promoting

growth in the limiting conditions but also for preparing cells for their predictable recovery

once nutrients are replenished. Recent studies suggest that this “preparation” or “anticipation”

presents a general principle in microbial stress signaling. For example, the ESR is induced by

moderate stresses that do not affect growth rate either in the presence or in the absence of the

stress response. Thus, rather than contributing to growth in these moderate stresses, the ESR

promotes survival in cases of subsequent, more severe stresses [4,24,32]. Similar anticipatory

regulation was observed in other microbial systems, including examples from bacteria and

yeast [33–37]. These evolved paradigms strongly suggest that throughout their natural history,

yeasts encountered complex and perhaps predictable combinations of stresses so that their

signaling circuits evolved to optimize not only the immediate conditions but also probably

upcoming needs.

Materials and methods

Strains and media

Saccharomyces cerevisiae strains used in this study are listed in S1 Table and were created from

the BY4741 background (MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0) by standard genetic methods

[38]. All of the relevant inserted fragments were validated by PCR followed by sequencing,

except for fragments that lead to gene deletion, which were validated only by PCR. Strains

fluorescently marked with constitutive cytosolic expression of mCherry were constructed

from pFA6a-NAT-TEF2pr-mCherry plasmid. The amplified fragment was inserted into

the HO locus by transformation. Strains fluorescently marked with constitutive cytosolic

expression of GFP were constructed similarly using the pFA6aNAT-TEF2pr-GFP plasmid.

Strains with the starvation response reporter PHO84p-Venus were constructed as previously

described [22]. Briefly, kanMX in pBS7 (Yeast Resource Center) was replaced with theHIS5
selection gene by BglII and EcoRI digestion from pDH5. Next, the promotor region of PHO84
(1,000 bp upstream from the start codon) was PCR amplified from the genome with primers

containing restriction sites of SalI and BamHI and inserted into pBS7 upstream of Venus.

The PHO84p-Venus-HIS5 fragment was amplified using the plasmid’s canonical forward and

reverse primers of pBS7 (Yeast Resource Center) with 40-bp homology upstream and down-

stream of HIS3 ORF for recombination into the HIS3 locus. To create a deletion of PHO4
(nos. 5 and 7, in S1 Table), HygromycinB was amplified from the pYM-N14 plasmid [39], in

which the kanMX was replaced with HygromycinB using SacI and BglII. The fragment was
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amplified with the following primers: AAGAGATGAGCAAAGGAGACAGAACAAGAGTA

GCAGAAAGTCCGTACGCTGCAGGTCGAC and CAGTCCGATATGCCCGGAACGTGC

TTCCCATTGGTGCACGGGAGCTCGTTAAAGCCTTCG. To generate the deletion of

PHO81 in the PHO84p-Venus-HIS5 strain (no. 8, in S1 Table), kanMX was amplified from

pBS7 with the following primers: AATAAATGCTACATAAATGCATGCCCTTAAAACTG

TATAACCATGAGATCTGTTTAGCTTGCCTCG and AATATTGATATGTAAAGTTCTG

TAATATGTAGTTTTGAAATCTTAATCGATGAATTCGAGCTCG. Strains (Nos. 6, 9, and

10, in S1 Table) originated from the yeast-deletion library [40]. To create a deletion of PHO80
in the PHO84p-Venus-HIS5 strain (no. 15, in S1 Table), the Δpho80::kanMX and flanking

regions were amplified from a Δpho80 deletion library strain [40] with the following primers:

CTTCGAGAGGCAGATAACC and CCAAATGATGGCCAATTGCT. The amplified frag-

ment was inserted instead of the PHO80ORF, and cells were selected on YPD +G418. Strains

with partially and fully active PHO4 (PHO4SA1234 and PHO4SA12346) were constructed from

previously described plasmids (EB1264 and EB1265, respectively) [19]. The amplified frag-

ments of active PHO4, with mutations in its phosphorylation sites (serine to alanine at sites 1,

2, 3, and 4, and in PHO4SA12346 also proline to alanine at site 6 [19]), followed by a fused GFP

and a URA3 selection, were inserted instead of the PHO4ORF. The addition of PHO4SA1234

(in strains no. 11 and no. 12, in S1 Table) was previously described [22]. To create the deletion

of PHM3 in PHO4SA12346 cells (no. 14, in S1 Table),HIS5was amplified from pDH5 with the

following primers: ATTATTACTTAATTATACAGTAAAAAAAACACGCTGTGTATTCG

TACGCTGCAGGTCGAC and AAATCGGCCAATAAAAGAGCATAACAAGGCAGGAA

CAGCTCGTTTAAACTGGATGGCGGC. To create a deletion of PHM3 in PHO84p-Venus-

HIS5 strain (no. 18, in S1 Table), CaURA3 was amplified from pAG61 with the following

primers: ATTATTACTTAATTATACAGTAAAAAAAACACGCTGTGTATTGTACAGCTT

GCCTCGTCC and AAATCGGCCAATAAAAGAGCATAACAAGGCAGGAACAGCTCT

GATTATAATTGGCCAGTC.

Strains that constitutively express PHO84 or PHO90 under TDH3 promotor (PHO84c and

PHO90c) were generated using an amplified PCR product of the TDH3 promoter, which was

inserted upstream of PHO84 or PHO90. KanMX-TDH3pr was amplified from pYM-N14 [39],

and a HygromycinB-TDH3pr fragment was similarly amplified from pYM-N14 in which

KanMX was replaced with HygromycinB. To create a deletion of PHO84 (no. 16, in S1 Table),

kanMX was amplified from pBS7 with the following primers: ACCAGGGCACACAACAAA

CAAAACTCCACGAATACAATCCAAATGAGATCTGTTTAGCTTGCCTCG and TATTT

GTTCTAGTTTACAAGTTTTAGTGCATCTTTGAGGCTTTTAATCGATGAATTCGAGC

TCG. To create a deletion of SPL2 (no. 20, in S1 Table), kanMX was amplified from pBS7 with

the following primers: GTCACTGCAGCCACGTGCCTAGATCTATTACTATGACTTCC

CATGAGATCTGTTTAGCTTGCCTCG and CAGAGGTAGAAGGTATGTATGTGTAAC

GATTAAGAGATGCAATCAATCGATGAATTCGAGCTCG. The double deletion of PHO84
and SPL2 in the PHO84p-Venus-HIS5 strain (no. 17, in S1 Table) was similarly generated

using kanMX and NAT, respectively.

Phosphate-limiting media were based on SC medium, prepared from YNB without phos-

phate (CYN0804). Phosphate was added in the form of KH2PO4 to reach the specified levels.

Fixed potassium levels were maintained by the addition of KCl (instead of KH2PO4). The

media were set to a pH of 5.

WT growth rate and reporter activation dynamics

WT cells with a starvation response reporter (Pho84promptor-Venus) and with or without

mCherry were grown overnight in Erlenmeyer flasks in rich Pi medium of 7.3 mM Pi to reach
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logarithmic growth (OD600 approximately 0.4, NovaSpec Plus Visible Spectrophotometer) and

were then transferred into 5 tubes. The samples were centrifuged, and all supernatant was dis-

carded. Next, for each tube, the relevant Pi medium was added, and the samples were resus-

pended. The washed samples were then inoculated to the specified low- or rich-Pi medium (0

mM, 0.06 mM, 0.2 mM, 0.5 mM, and 7.3 mM Pi), and the initial OD600 was set to 0.05. Cells

were grown in Erlenmeyer flasks at 30˚C until Pi was exhausted and they reached the station-

ary phase (26 hours). Samples for optical density (OD600) and flow cytometry (to measure

reporter activation levels) were taken during growth in high Pi (before wash, t = 0) and during

growth in the various Pi media approximately every 30 minutes for 12 hours and at a final

time point after 26 hours.

To calculate the growth rate in the different Pi media, the log2 (OD600) versus time was fit-

ted with the MATLAB function csap (smoothing parameter of 0.4), and the values of the fitted

growth curve data were determined at 1-minute intervals. The growth rate was calculated for

each measured time point (between 0.5 hours and 11.5 hours) from its slope with 2 surround-

ing (±1 minute) fitted values. To control for density-dependent effects, the growth rate was

normalized by the growth rate of cells transferred to rich phosphate medium: The growth

rates in rich medium with the same optical density (OD) were subtracted from the cell’s

growth rate at each time point in a given Pi medium. The growth rate used for normalization

was derived from the fitted growth curve values of cells grown in rich medium (as above).

The time point on the fitted growth curve with the closest OD to that of the sample was chosen

for normalization. The growth rate of this time point was determined with 2 surrounding (±1

minute) values.

Competition assays

Mutant relative abundance and reporter activation dynamics. All the competition

experiments were performed against a WT reference strain BY4741. WT and mutant cells car-

ried a starvation response reporter (PHO84promptor-Venus), and one of them also harbored

a constitutive mCherry to distinguish between the WT and mutant cells in the flow cytometer.

The PHO4SA1234 and PHO4SA12346 mutants lacked the reporter, since they also contained GFP

fused to Pho4 ORF. WT and mutant cells were grown in rich Pi medium of 7.3 mM Pi to the

logarithmic phase (OD600 approximately 0.4, NovaSpec Plus), mixed at an OD ratio of approx-

imately 1:1, and transferred to 5 tubes. The samples were centrifuged, and all supernatant was

carefully discarded. The cells were then resuspended in the relevant Pi media (0 mM, 0.06

mM, 0.2 mM, 0.5 mM, and 7.3 mM Pi) and inoculated at an OD600 of 0.05 in 50-ml tubes.

Cells were grown at 30˚C until Pi was exhausted and they reached the stationary phase

(approximately 24 hours). The following day, cells were recovered in high Pi levels of 7.3 mM

or 20 mM Pi as indicated, diluted to an OD600 of 0.05, and grown for approximately 24 hours

until they reached the stationary phase. In the competition experiment of Δpho84with and

without Δspl2, the cells were grown for 21 hours in 0.2 mM Pi (S2H–S2I Fig) and diluted to an

OD600 of 0.01 upon recovery (Fig 4F and 4H).

The mutant/WT frequencies and the starvation response induction were established by

flow cytometry. Samples for flow cytometry were taken after cells were mixed in high Pi

(t = 0), at several time points during growth at low Pi levels until the stationary phase was

reached (approximately 24 hours) and similarly during recovery. Approximately 50,000 events

per sample were acquired by the flow cytometer. Initial events acquired by the flow cytometer

were removed to reduce noise and carryover from the previous sample as follows: the acquired

events were binned according to their acquisition time. A section of early acquired bins was

removed only if all neighboring bins had shown a mean fluorescence deviated by more than 3
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STDs from the mean. The mean was calculated from the last bins that were acquired (consti-

tuting 60% of the acquired events). The retained data constitute at least 60% of all acquired

events (see S3 and S4 Data). Mutants’ (versus WT) relative abundances during growth in low

Pi and during recovery were normalized to the initial time point t = 0 (prior to transfer to low

Pi or prior to recovery, respectively).

Mutant relative fitness. The fitness was established from competition experiments pre-

formed in 96-well plates. WT and mutant cells, marked with different fluorescent proteins,

were grown overnight in 96-well flat-bottom plates in rich Pi medium of 7.3 mM Pi. The next

day, the stationary cells were diluted 1/50 for 3 hours of growth in 7.3 mM Pi. WT and mutant

cells were mixed at a ratio of approximately 1:1. Cells were diluted 1/10 for growth in high-Pi

medium (20 mM Pi) and for flow cytometry analysis (t = 0). Prior to transfer into low-Pi media,

200 μl of mixed cells was centrifuged for 1 minute in a 96-well round-bottom plate, and 180 μl

of the supernatant was discarded. Cells were resuspended with 180 μl of no-Pi medium. This

wash was repeated, and the overall Pi in the medium was diluted by 1/100. Washed cells were

then diluted 1/10 and grown (in 96-well flat-bottom plates) in all the relevant low-Pi media

(ranging from no Pi up to 0.5 mM Pi). Therefore, cells grown in no Pi are still expected to have

maximal initial Pi residues of approximately 7.3 μM Pi in their environment. After approxi-

mately 24 hours, the samples were recovered into high-Pi medium with 2 dilution steps (total of

10−3 dilution). The first dilution plate was read in the flow cytometer (t = approximately 24

hours in starvation, and t = 0 of recovery). After approximately 24 hours of growth in high Pi,

the change in the mutant and WT ratio was measured by flow cytometry (t = approximately 24

hours of recovery). The mutants’ relative fitness was calculated for growth in Pi limitation and

for the following recovery, from the slope of its relative frequencies (in log) as a function of the

number of generations (based on OD measurements), divided by log(2).

Number of WT generations during recovery. WT cells with and without a starvation

response reporter (PHO84p-Venus) were grown overnight in 50-ml tubes until reaching an

OD600 of approximately 0.5 (NovaSpec Plus Visible Spectrophotometer). To control for the

lack of fitness impact due to reporter presence, differentially labeled WT cells were mixed

(WT-PHO84p-Venus was mixed with WT-mCherry, and WT-PHO84p-Venus + mCherry

was mixed with WT-GFP) in a deep 96-well plate. Mixed WT cells (approximately 1:1 ratio)

were transferred (240 μl) and centrifuged for 1 minute in a 96-well round-bottom plate. The

supernatant was removed by flipping the plate. The cells were resuspended in the relevant low-

Pi media (200 μl). This wash was repeated 2 additional times. The cells were then diluted (1/6)

to an OD600 of approximately 0.1 (NovaSpec Plus) for growth in Pi limitations (ranging from

no Pi to 0.5 mM Pi) and high-Pi medium (20 mM Pi). Cells in 96-well flat-bottom plates were

grown for 21 hours in low-Pi conditions at 30˚C. For recovery, cells were diluted into several

plates with a high-Pi medium of 20 mM Pi (initial OD600 of approximately 0.1). During (and

prior to) recovery, one of the diluted plates was taken both for OD measurements (OD600nm,

Tecan Sunrise) to calculate the number of generations and for the cells’ relative growth mea-

surements (flow cytometer) to control for a neutral fitness impact of the starvation response

reporter.

Time course experiment for RNA-seq

Cells were grown as described above for WT growth rate and reporter activation dynamics.

Briefly, logarithmically growing cells (OD600 approximately 0.4) grown overnight in high Pi

levels (7.3 mM Pi) were washed in the relevant low-Pi medium. The cells were then inoculated

to a specified medium: no Pi, very low Pi (0.06 mM Pi), low Pi (0.2 mM Pi), and intermediate–

low Pi (0.5 mM Pi) at an initial OD600 of 0.05. The cells were grown at 30˚C until Pi was
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exhausted and they reached the stationary phase (24.7 hours). The following day, the cells were

recovered into high Pi levels of 7.3 mM or 20 mM as described (diluted to an OD600 of 0.05)

and grown for 9 hours or 24.7 hours (stationary phase). Samples for RNA sequencing were

taken prior to entry into low Pi levels (t = 0) and at several time points during growth in low Pi

levels until the cells reached the stationary phase at 24.7 hours; samples were taken similarly

during recovery.

RNA extraction and sequencing

The samples were centrifuged for 1 minute at 4,000 rpm, the supernatant was discarded, and

the pellet was submerged immediately in liquid nitrogen and preserved in −80˚C. The break-

ing of the cell wall was carried out in a deep 96-well plate. Cells were lysed by the addition of

450 μl of lysis buffer (1 M sorbitol (Sigma-Aldrich), 100 mM EDTA, and 0.45 μl lyticase (10

IU/μl)). The plate was incubated for 30 minutes at 30˚C and then centrifuged for 10 minutes at

2,500 rpm. The supernatant was collected into a new deep 96-well plate. From this point for-

ward, the RNA extraction was carried out using the Nucleospin 96 RNA kit, changing only

β-mercaptoethanol with DTT. cDNA was prepared from the RNA extracts, barcoded, and

sequenced using the Illumina HiSeq 2500 system, using Truseq SR Cluster Kit v3 -cBot-HS

cluster kit and Truseq SBS Kit v3-HS run kit (50 cycles) [41].

RNA-seq data processing and analysis

Each RNA-seq sample was mapped to the genome of S. cerevisiae (R64 in SGD) using bowtie

(parameters: - -best –a –m 2 –strata -5 10). Mapped reads were filtered for reads not mapped

to rRNA, and the aligned filtered reads were down-sampled to 400,000 reads in order to have

similar data from all samples. PCR bias was normalized for by using the unique molecular

identifier (UMI), scoring each position on the genome by the unique number of UMIs it had

out of the 256 possible UMIs [41]. The expression of each gene was determined by summing

all of the reads aligned to the 400 base pairs upstream to its 30 end to 200 base pairs down-

stream from the 30 end. For genes with high sequence similarity in the region being summed

(thus having sequences aligning as good to both genes), the reads aligned were separated to

both genes according to the amount of uniquely mapped sequences. The sum of all gene

expression was normalized to be 1,000,000, and genes with an expression below the threshold

of 10 reads were excluded. All WT and mutant RNA data presented were normalized to loga-

rithmic growing WT cells in 7.3 mM Pi (t = 0 of experiment 1; see S2 Data) before the cells

were distributed between no Pi, 0.06 mM, 0.2 mM, and 0.5 mM Pi and grown for 24.7 hours

and recovered into 20 mM Pi. Stress and protein synthesis genes were not presented in the fig-

ures if (1) during growth in low Pi, they were below detection levels (not a number [NaN]) in

the (normalized) start time point (t = 0, 7.3 mM Pi) or (2) during recovery from low Pi, they

were below detection levels (NaN) in the (normalized) t = 0 time point of recovery (the last

time point of growth in low Pi prior to recovery).

Classification of PHO-regulated genes, stress genes, and protein

synthesis genes

Genes were classified as PHO-regulated genes if they met 2 RNA expression criteria. The first

required up-regulation in ON cells (PHO4SA12346) versus OFF cells (Δpho4) in at least 15 out

of 25 samples. The samples (3�8) were taken during growth in low Pi of 0.06 mM, 0.2 mM,

and 0.5 mM Pi (time points: 1, 2, 3.5, 5, 6.5, 8, 9.5, 24.7 hours), and 1 sample was taken from

logarithmically growing cells in high-Pi medium (prior to the transfer to the different low-Pi

media). Genes were considered up-regulated if the expression ratio between ON and OFF cells
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was larger than or equal to 2 or if the OFF cells were below detection levels (NaN) and the ON

cells were 10 times higher than the defined RNA detection level (10 reads). The second crite-

rion required up-regulation in WT cells during growth in no Pi medium in at least 6 out of 8

time points (1, 2, 3.5, 5, 6.5, 8, 9.5, and 24.7 hours). Genes were considered up-regulated if the

expression ratio between no Pi and high Pi levels was larger than or equal to 2. The sample

grown in high-Pi medium was taken during logarithmic growth in 7.3 mM Pi, prior to transfer

into no Pi. Genes that were below detection levels in high Pi were removed from the analysis.

Stress response genes (Stress) and genes coding for ribosomal proteins (Protein Synthesis)

were defined in [20] (see S2 Data for gene names). Those transcriptional modules were charac-

terized based on coexpression in over 1,000 expression profiles of S. cerevisiae during growth

in diverse environmental conditions. The stress module we have used (46 genes) is a subgroup

of the ESR [24].

Flow cytometry

Flow cytometry was done with a BD LSRII system (BD Biosciences). GFP and Venus samples

were analyzed with excitation at 488 nm and emission at 525 ± 25 nm. Samples with mCherry

were analyzed with excitation at 594 nm and emission at 610 ± 10 nm.

Experimental evolution

A PHO84C strain marked with mCherry and with a reporter of the starvation response

(PHO84p-Venus) was evolved in the lab to create 16 independent populations. The experi-

mental evolution was performed in 50-ml tubes, with a volume of 10 ml. Stationary cells

grown in high-Pi (20 mM Pi) medium were transferred (10 μl) into 16 tubes with low Pi (0.2

mM Pi) and grown until they reached the stationary phase (an OD600 of approximately 8.5;

cells underwent approximately 10 generations). Next, cells were transferred (10 μl) in parallel

from each tube to very low-Pi (0.06 mM Pi) medium. In order to reach prolonged Pi starva-

tion, cells were grown for at least 2 days, reaching a final OD600 of approximately 4 and

undergoing approximately 9 generations. Then, 25 μl of stationary cells from each tube was

recovered into a 20 mM Pi medium and grown until stationary phase (an OD600 of approxi-

mately 9.5, cells underwent approximately 10 generations). This cycle of fluctuating Pi levels

was repeated 10 additional times, for a total of approximately 300 generations of evolution.

Before each transfer, OD600 was measured and PHO84p-Venus levels were verified by flow

cytometry. Samples were frozen for further analysis throughout the evolution.

Whole genome sequencing of evolved isolates

Whole genome sequencing was performed to identify the adaptive mutations in evolved iso-

lates. To this end, the ancestor and 60 isolates from 10 evolved populations were sequenced.

The isolates were taken from the middle (after approximately 150 generations, 30 isolates) and

the end of a lab-evolution experiment (after approximately 300 generations, 30 isolates). The

fitness of the isolates was verified by a competition assay. Only isolates in which the limited

recovery of the ancestor (PHO84C) cells was rescued were sequenced. All of the isolates after

approximately 300 generations were adapted, while after approximately 150 generations, only

30 out of the 56 isolates were adapted. DNA was extracted from 2 ml of saturated overnight

culture grown in YPD. The cells were pelleted, resuspended in 10 ml sorbitol 1M at 4˚C, and

centrifuged for 2 minutes at 4˚C at 4,000 rpm, and the supernatant was discarded. The cells

were then resuspended in 300 μl of lysis buffer (50 mM HEPEs pH 7.5, 140 mM NaCl, 1 mM

EDTA, 1% TritonX-100, and 0.1% sodium deoxycholate) and transferred to 2-ml safe-lock

Eppendorf tubes with 0.5-mm Zirconium Oxide beads. They were then blended in a Bullet
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Blender 24 (Next Advance) for 1 minute at level 8. The supernatant was transferred to new

1.5-ml tubes together with an additional 200 μl of lysis buffer used to wash the beads. Lysates

were treated for 60 minutes with RNAse at 37˚C and then treated for an additional 2 hours

with Proteinase K (20 mg/ml) at 37˚C. Cleared lysates were sonicated for 30 minutes (30 sec-

onds on, 30 seconds off) in a Bioruptor plus (Diagenode) cooled water bath sonicator, result-

ing in an average DNA fragment size of approximately 300 bp. Ten ul of the lysate was taken

from each sample, and a multiplexed library was prepared for sequencing [42]. The library was

sequenced in an Illumina HiSeq 2500 with 100-bp paired-end sequencing.

Genotyping

DNA reads from the different isolates were aligned to the yeast genome against the S288C_

reference_sequence_R64-1-1_20110203_edited.fa S288C reference genome using bwa (ver.

0.6.2) [43]. Duplicated reads were removed with picard-tools (ver. 1.73), and the bam files of

the samples were merged. Determination of SNP positions was performed using the genome

analysis toolkit (GATK) Unified Genotyper [44]. Since there was no SNP database available, a

database was created from our data. Towards this task, the following GATK (ver. 2.2–16) tools

were used on the merged bam file: RealignerTargetCreator, IndelRealigner, and UnifiedGen-

otyper (-stand_call_conf 50.0 -stand_emit_conf 20.0 - -sample_ploidy 1 - -genotype_likeli-

hoods_model BOTH - -max_alternate_alleles 1 -dcov 100); from this first round of variant

calling, the variants were filtered using SelectVariants (-select "QD> 10.0 && QUAL>50 &&

DP>10"). The vcf result file was used for the second round of variant identification. In this

round, the following GATK tools were used: RealignerTargetCreator, IndelRealigner, BaseRe-

calibrator, and UnifiedGenotyper (with the above parameters except for - -max_alternate_

alleles 4 and –dbsnp). SNP annotation was added with the tool snpEff [45].

The natural amino-acid variety in PHO84 homologs

The amino-acid variety in PHO84 homologs was established with ConSurf [46]. Starting from

the PHO84 protein sequence (SGD) as input, multiple sequence alignment was built using

MAFFT. The homologs were collected from UNIREF90. CS-BLAST was used for the homolog

search algorithm, with search parameters of CSI-BLAST E-value of 0.0001, a maximal ID of

95%, and a minimal ID of 35%, and 3 iterations of CSI-BLAST. CSI-BLAST resulted in 501

sequences, which were used to calculate the residue variety (in percentage) for each position in

the query sequence (Pho84 ORF).

Allele swapping

To create strains with the evolved amino-acid substitutions (nos. 22–25, in S1 Table), each

of the 4 base substitutions evolved in the PHO84ORF during experimental evolution was

inserted into the ancestor strain and the WT (with PHO84p-Venus reporter) in 2 transfor-

mation steps. First, PHO84ORF was disrupted by CaURA3 insertion, which was lifted from

pAG60 [47] with the primers ATGACGAAGGTTTCGGTTGGCAACAAGTTAAGACCAT

CTCCTGTTTAGCTTGCCTTGTCC and CCAGTAACCAGGTAATGAACCAGCACAAA

TCAAAATCAGATTCGACACTGGATGGCGGCG. Next, we lifted each of the 4 evolved

alleles by PCR with the primers AACATGGCCTTCCACAACC and GTTTATGGTATGC

GAAACCG from representative evolved isolates. Each of the 4 amplified fragments was

inserted in place of the PHO84 deletion created above. All insertions were verified by PCR

and sequencing.
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Supporting information

S1 Fig. Sequential induction of Pho4-target genes. (A) Pho4-targets defined in our data:

Pho4-target genes were defined as genes which are (1) induced over two-folds in a no-phos-

phate medium, and (2) induced over two-folds in cells expressing a constitutive PHO4SA12346

allele, compared to Δpho4 cells (Materials and methods). 33 genes fulfilled both criteria, as is

shown in the Venn diagram. This set largely overlapped the PHO regulon defined previously

[9,19], as shown. (B-C) Temporal induction of pho4-dependent genes: (B) Shown is the gene

expression data used to generate the correlation matrix in Fig 1D. Plots with a high-temporal

resolution (same data as in Fig 1C), while highlighting the ordering of genes based on their

mean induction in the two hours following transfer (indicated on the left) into 0.06 mM Pi.

The same order is kept throughout the manuscript. The data in (B) are from 1 replicate, for an

additional biological (and experimental) replicate see Fig 3C. (C) Same as Fig 1C for additional

gene expression data of wild-type cells during growth in 0.2 mM Pi. Shown is the Pearson cor-

relation matrix for PHO genes (as in Fig 1D), and for all expressed genes. The data in (C) are

from 1 replicate, for an additional biological (and experimental) replicate see Fig 1C. (D-E)

Phosphate becomes growth limiting concomitant with the induction of the second transcrip-

tion wave: Growth rate data shown in Fig 1F is shown in (D) as a function of time. The data in

(D) are from 2 replicates. In (E), the average expression of genes induced at the second tran-

scription wave (lowest-scoring eight genes in (B)) is shown as a function of the PHO84p-

Venus reporter expression (data from the experiment in Fig 1F). Shown are time points: 1, 2,

3.5, 5, 6.5, 8, and 9.5 hours during growth in low Pi media. Note that the induction of the sec-

ond wave of Pho4-target genes coincides with the crossing of the reporter activation threshold,

as defined in Fig 1F. Per each of the 4 low Pi media 1 replicate is shown in (E). The raw data

for (E) are available in S1 and S2 Data. The raw data for (A-C) are available in S2 Data. The

raw data for (D) are available in S1 Data.

(TIF)

S2 Fig. Phosphate becomes growth limiting concomitant with the induction of the second

transcription wave. (A-B) Fluorescence labeling using TEF2-mCherry, or PHO84p-Venus

reporter expression, does not affect growth fitness: Shown are the results of competition

between wild-type strains with or without the indicated reporters. In (A), wild-type strains of

the indicated backgrounds were co-incubated in media containing different levels of phos-

phate, as indicated, and their relative fitness was measured following approximately 24 hours

of incubation (Materials and methods). Per each of the 10 low and high Pi media, 1 replicate is

shown. (B) The same as Fig 2B but using a wild-type rather than Δpho4 cells. Per each of the 5

low and high Pi media, 1 replicate is shown. (C) Temporal induction of the starvation pro-

gram: Data from the experiments in Fig 2B and 2C. The cells expressed the PHO84p-Venus

reporter whose temporal expression, as defined by a flow-cytometer, is shown. The data in (C)

are the mean and the standard error of 2 replicates. For Δpho4 gene expression profiles in low

Pi levels see (S3A–S3C Fig). (D-E) The early phase of Pho4-target gene induction does not

contribute to cell growth: same as Fig 2B and 2C for Δpho81 cells. Per each of the 5 low and

high Pi media, 1 replicate is shown. See Fig 2B and 2C for similar PHO regulon deficient

mutant (Δpho4) cells. (F-J) Limited phosphate transport is a main cause for the reduced

growth of Δpho4 cells when entering a limited phosphate regime: Similarly as Fig 2C, for the

indicated strains and the indicated conditions (F-I). PHO84c denotes a strain that expresses

the PHO84 high affinity transporter constitutively using the strong TDH3 promoter; Δpho84 is

a strain deleted of PHO84, while Δpho84+Δspl2 indicates a strain deleted also of SPL2, the

inhibitor of the low affinity transporter Pho90 that, similarly to PHO84, is also induced by

Pho4. In (J) shown (log2) relative abundance of cells grown in low Pi medium till deep
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stationary phase. Samples were taken after 21–24.7 hours in low Pi (0.2 mM Pi). Note that

increased activity of the low affinity transporter compensates for the lack of PHO84, and that

the double deleted strain (Δpho84+Δspl2) phenotype resembles that of the Δpho4 strain. The

data in (F-G) are the mean and standard error of 2 to 3 replicates (Δpho4 and Δpho4+PHO84C,

respectively). The data in (H-I) are the mean and standard error of 2 replicates (Δpho4) and 1

replicate (Δpho84with and without Δspl2). This data is supported by the experiments shown

in (J). The data in (J) are the mean and standard error of 2 replicates (Δpho4) and 3 replicates

(Δpho84with and without Δspl2). The raw data for (B) are available in S3 Data. The raw data

for (C-J) are available in S4 Data. The raw data for (A) are available in S5 Data.

(TIF)

S3 Fig. Constitutive activation of Pho4-target genes affects cell growth. (A-C) Gene

expression profiles of cells expressing the constitutive PHO4 allele: Same as Fig 1C for the

indicated strains. PHO4SA12346 is a strong activating allele, while PHO4SA1234 is a weak activat-

ing allele [19]. Δpho4 is a PHO regulon deficient mutant. The data acquired during growth

in 0.06 mM Pi (A), 0.2 mM Pi (B), and 0.5 mM Pi (C) are from 1 replicate. See (Fig 3C) for

PHO4SA12346 growth in 0.06 mM Pi. Notice, constitutive PHO4 allele strains ability to strongly

(PHO4SA12346) or partially (PHO4SA1234) express the Pho4-target genes even in high Pi levels

(prior to transfer into low Pi, t = 0), as shown previously [19]. This activation is maintained

also during the initial hours of growth in low Pi. The absence of the regulon induction seen in

Δpho4 (A-C) was also verified with a Venus reporter (an independent experiment that uses an

independent construct) (see S2C Fig). (D-E) Constitutive expression of Pho4-depdent genes

promotes growth in low phosphate: Same as Fig 3A for the indicated strains. Per each of the

five low and high Pi media in (D-E) 1 replicate is shown. The data in (D) are supported by Fig

3G. The raw data for (D-E) are available in S4. The raw data for (A-C) are available in S2 Data.

(TIF)

S4 Fig. The starvation program promotes recovery once phosphate is replenished. (A) The

starvation program promotes recovery: Same as Fig 4C for Δpho81 cells. The data in (A) dis-

plays 1 replicate (per each of the 5 low and high Pi media) and is supported by the experiments

shown in (B). (B) Constitutive expression of PHO84 partially compensates for the recovery

phenotype of Δpho81 cells: same as Fig 4E for the indicated strains. The data are the mean and

standard error of 3 replicates. (C-D) Both the low and high-affinity transporters are required

for recovery from starvation: Same as Fig 4G and 4I for recovery into high Pi (7.3 mM Pi). The

data in (C-D) are the mean and standard error of 2 replicates. (E-I) Strong constitutive activa-

tion of Pho4-target genes impedes recovery: (E-G) same as Fig 4C for the indicated strains.

PHO4SA1234 and PHO4SA12346 are the weak and strong activating PHO4 alleles, respectively

[19]. The data in (E-G) displays 1 replicate (per each of the five low and high Pi media). Data

in (F) is supported by the experiments shown in (I). (H) Expression profiles same as Fig 4B for

the indicated strains during recovery. The data are from 1 replicate. (I) Δphm3 partially com-

pensates for the recovery phenotype of constitutive activation of the PHO4SA12346 allele: same

as Fig 4E for the indicated strains. The data in (I) are the mean and standard error of 3 repli-

cates. The raw data are available in S5 Data. The raw data for (A, C-G) are available in S4 Data.

For (H) the raw data are available in S2 Data.

(TIF)

S5 Fig. Recovery phenotype of PHO84-constitutive depends of Pho4-target gene induc-

tion. (A) The induction of Pho4-target genes reporter is delayed in PHO84C cells: wild-type

and PHO84C cells expressing PHO84p-Venus reporter were mixed and transferred to media

containing different levels of phosphate, same as S2C Fig. Cells were followed for twelve hours.
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Shown is the reporter expression in the 2 strains as a function of incubation time. The data in

(A) are the mean and standard error of 3 replicates. (B) Induction of early wave of Pho4-target

genes is delayed in PHO84C cells: Same as Fig 1C for the indicated strains. The data in (B) are

from 1 replicate and is supported by Venus reporter experiments shown in (A). (C-D) Weak

constitutive activation of Pho4-target genes rescue recovery of PHO84C cells: same as Fig 4C

for the indicated strains. PHO4SA1234 is the weak PHO4 allele. Cells were recovered into high

Pi of 20 mM Pi after 23 hours in the indicated low Pi levels. The data in (C-D) displays 1 repli-

cate (per each of the five low and high Pi media), and supports previous report [22]. The raw

data for (A, C-D) are available in S4 Data. The raw data for (B) are available in S2 Data.

(TIF)

S6 Fig. Lab evolution selects for PHO84 mutations that rescue the recovery phenotype of

PHO84C. (A) Lab evolution selected for mutations that appear in PHO84 homologs: shown

are the 3 amino-acid substitutions (Pho84-L74F, Pho84-V383L, and Pho84-L259P) identified

in 60 evolved isolates, as described in Fig 6B and their presence in PHO84 homologs from

different species (Materials and methods).The natural polymorphism of leucine to proline

(L259P), is highly conserved and was previously suggested to be adaptive during phosphate

starvation [48,49] (B-C) The selected PHO84 mutation promotes growth in low Pi: (B) Same

as Fig 2B following transfer to a medium containing 0.06 mM Pi for the indicated strains. The

PHO84mutations (L74F (ttG/ttC), V383L, and L259P) identified in the selected stains (see

Fig 6B) were introduced into wild-type and PHO84C cells instead of the wild-type allele (in

PHO84C cells both the constitutive promoter and the evolved mutations were introduced into

PHO84 endogenous site). The data in (B) are from 1 replicate and is supported by the experi-

ments shown in (C). In (C) shown is the (log2) relative abundance after 24.7 hours of growth

in the indicated low and high Pi levels. The data in (C) are the mean and standard error of 3, 2,

or 1 replicates (see bar edge color: black, grey, or none, respectively). (D) The Pho84-L74F

alters the temporal induction of Pho4-target genes: transcription profiles, as in Fig 1C, follow-

ing transfer to a medium containing 0.06 mM Pi for the indicated strains. The data in (D) are

from 1 replicate and is supported by the experiments with a Venus reporter (see S5A Fig and

D4 Data). (E-J) Selected PHO84mutation rescues the recovery phenotype: Same as Fig 6C–6E

for the indicated mutations and starvation conditions. The data in (E) are from 1 replicate and

is supported by the experiments with a Venus reporter, see D4 Data. The data in (F-I) are from

1 replicate and is supported by the experiments shown in (J). the data in (C) are the mean and

standard error of 3, 2, or 1 replicates (see bar edge color: black, grey, or none; respectively).

The raw data for (B, C, F-J) are available in S4 Data. The raw data for (D, E) are available in S2

Data. The raw data for (A) are available in S6 and S7 Data.

(TIF)

S1 Table. List of strains used in this study.

(XLSX)

S1 Data. WT growth rate in low Pi, Venus reporter activation dynamics in low Pi, and

number of generations during recovery.

(XLSX)

S2 Data. RNAseq data.

(XLSX)

S3 Data. Competition assay: Relative abundance of WT control.

(XLSX)
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S4 Data. Competition assays: Mutant relative abundance and Venus reporter activation

dynamics.

(XLSX)

S5 Data. Competition assays: Mutant relative fitness.

(XLSX)

S6 Data. FASTA protein sequences used to establish the natural amino-acids variety in
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