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Abstract Transcription factors (TFs) bind to specific DNA sequences to induce or repress

gene expression. Expression levels can be tuned by changing TF concentrations, but

the precision of such tuning is limited, since the fraction of time a TF occupies its

binding site is subject to stochastic fluctuations. Bicoid (Bcd) is a TF that patterns the

early Drosophila embryo by establishing an anterior-to-posterior concentration gradient

and activating specific gene targets (“gap genes”) in a concentration-dependent manner.

Recently, the Bcd gradient and its in-vivo diffusion were quantified in live embryos, raising

a quandary: the precision by which the Bcd target genes are defined (one-cell resolution)

appeared to exceed the physical limits set by the stochastic binding of Bcd to DNA. We

hypothesize that early readout of Bcd could account for the observed precision. Specifically,

we consider the possibility that gap genes begin to be expressed earlier than typically

measured experimentally, at a time when the distance between the nuclei is large. At this

time, the difference in Bcd concentration between adjacent nuclei is large, enabling better

tolerance for measurement imprecision. We show that such early decoding can indeed

increase the accuracy of gap-gene expression, and that the initial pattern can be stabilized

during subsequent divisions.

Keywords Bicoid · Morphogen · Noise · Stochastic simulation ·
Drosophila · Development

1 Introduction

During development, uniform fields of cells are patterned by gradients of morphogens,

molecules that define distinct gene expression domains in a concentration-dependent
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manner. In the early Drosophila embryo, patterning along the anterior-posterior (A-P) axis

is determined by the graded distribution of Bicoid (Bcd), a transcription factor that induces

target genes (the “gap genes”) by directly binding to their gene promoter [1–3]. Bcd levels

peak at the anterior end of the embryo and decrease gradually towards the posterior pole.

Its target genes are expressed in an all-or-non fashion, patterning the embryo into distinct

domains of gene expression. This threshold-like response is due to cooperative binding of

Bcd to gap-gene promoters [4–8] and to mutual repression between gap genes, themselves

being transcription regulators [9–17].

Recent studies characterized the precision by which gap genes are defined, demonstrat-

ing remarkable reproducibility between individual embryos [18]. When measured at late

stage 14, Hunchback (Hb) is reproducibly expressed at the center of the embryo at single

nucleus precision (∼8 μm). Achieving this precision requires a highly accurate readout of

the concentration of Bcd inside the nucleus. In fact, to properly differentiate two adjacent

nuclei, this precision should exceed, or at least be comparable to the difference in the mean

Bcd level between these nuclei (Fig. 1).

Because Bcd is a transcription factor, it binds directly to specific sites on the DNA.

Therefore, the translation of this gradient into distinct spatial domains of gap-gene expres-

sion is based solely on the occupancy of these sites. As was proposed recently, this poses a

strong limitation on the accuracy of the system: as Bcd reaches its cognate site by diffusion,

its binding rate is subject to the inherent randomness of the diffusional motion. Promoter

occupancy will thus fluctuate stochastically in time, hindering precise Bcd measurement

[19, 20].

To estimate the maximal precision by which Bcd nuclear concentration can be measured,

previous studies followed the “perfect instrument” approximation, formulated by Berg

and Purcell [21], which assumes that all molecules within a volume occupied by the

binding sequence are measured continuously, and that the time-interval between subsequent

independent measurements is given by the diffusion-controlled rate by which molecules
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Fig. 1 Signal and noise in Bcd morphogen readout. Bcd (solid black) is distributed as a gradient along

the A-P axis (x). Syncytial nuclei (green) also reside along the A-P axis and therefore experience distinct

Bcd levels. The difference in Bcd levels between adjacent nuclei—�Bcd(x)—is the basis for differential

patterning and thus the signal is defined by �Bcd(x)/ Bcd(x). The actual levels of Bcd measured by the

nuclei (gray) will fluctuate stochastically, due to fluctuations in promoter occupancy. The typical size of

these fluctuations is (4πDa[Bcd]T)
−0.5

(see text). The signal-to-noise ratio must be greater than 1 in order to

achieve a precise readout of the Bcd gradient
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within this volume are replaced. The variance in estimating Bcd concentration is therefore

given by (Da[Bcd]T)
1/2

, where [Bcd] represents the actual Bcd concentration, a is the

size of the Bcd binding sites, D is the Bcd diffusion coefficient, and T the measurement

time [19].

To determine the minimal time over which Bcd levels need to be measured in order to

enable the accurate definition of gap-gene expression domains to within one-cell resolution,

the predicted variability in the estimate of Bcd levels should be compared to the signal,

namely, the difference in the mean binding frequency between two adjacent nuclei (Fig. 1).

Based on the measured Bcd spatial profile and diffusion coefficient, it was estimated that

almost 2 h of averaging time is required to reduce noise to a value comparable to the

signal. This time, however, is too long considering the relevant developmental timeframe

of ∼60 min.

Taken together, these estimates imply that the physical limitations on the precision of

Bcd readout appear too high to account for the observed precision of expression of its target

genes. These limitations are contributed to by two main factors. First, the small DNA target

site leads to high fluctuations in the estimate of Bcd concentration. Second, the close prox-

imity of the nuclei leads to small mean differences between Bcd levels in adjacent nuclei.

In a previous study, we showed that the estimate of the Bcd target site might be too

conservative [22]. A combination of one-dimensional diffusion (sliding) events of Bcd on

the DNA interspersed by three-dimensional diffusion in the cytoplasm might, in effect,

extend the target size. This effect could decrease noise, although not sufficiently as to

explain the observed accuracy of gap gene expression domains.

Here, we consider the possibility that the signal (difference in Bcd concentration between

adjacent nuclei) is larger than previously estimated, thus increasing precision of Bcd

morphogen readout. We argue that this will be the case if gap genes begin to be expressed

prior to division cycle 14, as most experimental evidence indicates [23–26], due to the pre-

steady state of the Bcd gradient and to increased inter-nuclear distance during these stages.

At earlier cycles, the number of nuclei is small and they are more widely spread, leading to

larger differences in Bcd concentration between neighboring nuclei. At the same time, Bcd

levels inside the nuclei are measured to be about the same as that found later, during cycle

14 [27, 28]. Therefore, noise is more easily tolerated during these division cycles. This

effect was largely ignored by previous analysis which concluded that early readout does

not improve the Bcd interpretation [29]. In contrast, we show that early readout can indeed

enable a more accurate definition of gap-gene expression domains, and that the accuracy of

this early profile is maintained during subsequent divisions.

2 Materials and methods

2.1 Spatial Gillespie algorithm (SGA)

The simulation is based on the Gillespie algorithm [30, 31]. In order to simulate patterning,

a spatial dimension was introduced into the algorithm. The simulation divides space into

sub-volumes (similar to a method used by [32, 33]). Every sub-volume contained its own

set of reactive species concentrations and corresponding reaction rates. In addition, every

diffusive molecule was allowed to transition from its current sub-volume to one of its

neighboring sub-volumes. Similar to chemical reactions, diffusion events were given a

probability of occurrence that was proportional to their relative rate, compared to all other
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possible events. In other words, the SGA generalizes the possible events that may occur

during every iteration to include not only chemical reactions but also diffusion steps as well.

In reality, microscopic diffusion steps are of the order of molecular size. However, when

simulating diffusion, the more one reduces the size of these steps, the higher the compu-

tational cost. In the framework of the SGA, it was neither cost-worthy nor necessary to

include diffusion steps smaller than sub-volume size. Therefore, the simulation considered

only macroscopic diffusion events of passage between sub-volumes. Accordingly, if D is the

macroscopic diffusion coefficient, l is the linear size of the one-dimensional sub-volume

and N is the number of diffusing molecules in the sub-volume, the rate of diffusion to a

neighboring sub-volume is:

� = D · N
l2

. (1)

2.2 Gradient formation

The SGA-simulated result of gradient formation was compared to the theoretically predicted

gradient. A one-dimensional system at steady state was considered, where a diffusive

particle is produced at one end (x = 0) and is uniformly degraded, thus described by the

equation:

D
∂2 N
∂x2

− N
τ

+ s0δ(x) = 0 (2)

where D is the one-dimensional diffusion coefficient, τ is the degradation time and s0 is the

production rate. The solution to (2) is:

N(x, t) = s0

√
τ

2
√

D
e− x√

Dτ . (3)

The system was simulated taking s0 = 85, τ = 10, D = 4 (all in arbitrary units).

2.3 Bcd and Hb simulation

The system was simulated as follows. One-dimensional space was divided into 100 linearly

arranged sub-volumes. Four reactions were allowed to take place: (1) Bcd binds to the Hb

promoter; (2) Bcd unbinds from the Hb promoter; (3) Hb is produced; (4) Hb is degraded. In

addition, Hb was allowed to diffuse to any of the neighboring sub-volumes. Bcd distribution

was taken as a deterministic steady-state gradient and did not diffuse between sub-volumes.

In order to achieve cooperative behavior, the reaction 2 rate constant was dependent upon

the number of bound Bcd molecules. The first four molecules unbind at an identical rate;

however, the rate of the first molecule to unbind once five molecules occupy the promoter

was ten times as low. Production of Hb was possible as long as five Bcd molecules occupy

the Hb promoter. Thus, the simulation models five cooperatively binding activators. Table 1

summarizes the different reactions and reaction rates that appear in the simulation.

The total virtual time that was simulated was 10 min. During the first 5 min, only

reactions 1 and 2 where allowed to take place, in order to establish a steady state of bound

Bcd distribution. During the remaining (virtual) 5 min, all four reactions took place, in

addition to Hb diffusion.
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Table 1 Reactions, reaction

rates, and constants used to

simulate the Bcd-Hb system

Reaction/diffusion Reaction/diffusion rate Rate constant

I Bcd → BcdP k1·[Bcd] k1 = 1

II BcdP → Bcd k2(BcdP=1−4) k2 = 5

k3(BcdP= 5) k3 = 0.5

III φ → Hb k4 k4 = 10

IV Hb → φ k5·[Hb] k5 = 10
−4

V 1D Hb diffusion
D ·[Hb]

l2
D = 5

2.4 Bcd, Hb and Kr network simulation

The simulation consisted of 12 chemical reactions and two diffusive species. The 12

reactions were: 1) Bcd binds to the Kr promoter; 2) Bcd unbinds from the Kr promoter; 3) Kr

is produced; 4) Kr is degraded; 5) Kr binds to the Hb promoter; 6) Kr unbinds from the Hb

promoter; 7) Bcd binds to the Hb promoter; 8) Bcd unbinds from the Hb promoter; 9) Hb is

produced; 10) Hb is degraded; 11) Hb binds to the Kr promoter; 12) Hb unbinds from the Kr

promoter. The two diffusive species were Hb and Kr. Cooperativity is assumed in all DNA-

binding events. As in the Bcd-Hb case described above, Hb and Kr were both produced

when five Bcd molecules occupied their respective promoters. Production, however, was

repressed when five molecules of the repressing species were also bound to the promoter

region. Table 2 summarizes all reactions and reaction rates present in the system.

Three cases were simulated, corresponding to low, high, and increasing nuclear density.

The first two consisted of 26 and 101 nuclei, along a one-dimensional axis. In the third case,

the initial 26 nuclei were first doubled to include 51 nuclei and then again to reach the final

101 nuclei. On event of doubling, new nuclei were placed in between previously existing

nuclei, so nuclear dispersion was kept uniform. In all “old” nuclei, at the onset of every new

Table 2 Reactions, reaction

rates, and constants used to

simulate the Bcd-Hb-Kr system

Reaction/diffusion Reaction/diffusion rate Rate constant

I Bcd → BcdPK k1·[Bcd] k1 =1

II BcdPK → Bcd k3(BcdPK=1−4) k3 = 0.5

k4(BcdPK=5) k4 = 0.05

III φ → Kr k5 k5 = 10

IV Kr → φ k6·[Kr] k6 = 10
−4

V Kr → KrP k1·[Kr] k1 = 1

VI KrP → Kr k7(BcdPK=1−4) k7 = 2

k4(BcdPK=5) k4 =0.05

VII 1D Kr diffusion
D ·[Kr]

l2
D = 0.06

VIII Bcd → BcdPH k1·[Bcd] k1 = 1

IX BcdPH → Bcd k2(BcdPH=1−4) k2 = 25

k4(BcdPH=5) k4 = 0.05

X φ → Hb k5 k5 = 10

XI Hb → φ k6·[Hb] k6 = 10
−4

XII Hb → HbP k1·[Hb] k1 = 1

XIII HbP → Hb k8(BcdPK=1−4) k8 = 37

k4(BcdPK=5) k4 = 0.05

XIV 1D Hb diffusion
D ·[Hb]

l2
D = 0.06
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“division cycle”, levels of Hb, Kr, and all promoter occupancies were fixed at their previous

values, while “new” nuclei acquired the values of their anteriorly neighboring nucleus. All

12 reactions were restricted to sub-volumes defined as nuclei. Hb and Kr were allowed to

diffuse through all “nuclear” sub-volumes. In all cases, a total virtual time of 10 min was

simulated.

3 Results and discussion

Estimating the precision of Bcd readout We begin by reviewing the formalism used

to calculate the precision of Bcd readout. This formalism follows the general approach

described by Berg and Purcell [21], and adapted recently to the Bcd system by Gregor et al.

[19]. The first thing to consider is the signal level, s, which is the difference in the mean

level of Bcd between two adjacent nuclei:

s = �[Bcd](x)
[Bcd](x)

= 1

[Bcd](x)

∣
∣
∣
∣

d[Bcd](x)
dx

∣
∣
∣
∣
�x. (4)

Here, [Bcd](x) denotes the position-dependent concentration of Bcd along the A-P axis and

�x is the distance between two neighboring nuclei. The Bcd profile was well estimated by

an exponential function:

[Bcd](x) = [Bcd]0 · e− x
λ (5)

with λ the length-scale of the exponential decay. Considering the measured values,

λ =∼100 μm and the distance between adjacent nuclei at cycle 14, �x = ∼10 μm, the

relative Bcd signal is estimated to be s ≈ 10%.

Clearly, the variability (noise) in estimating the Bcd level in any individual nucleus

should be lower than 10% to enable reliable distinction between two adjacent nuclei. The

minimal level of noise in Bcd measurement can be estimated by considering the variations

in promoter occupancy, namely the fraction of time the Bcd-binding site is occupied, given

by kon[Bcd]/kof f . Since the binding flux is limited by diffusion (kon[Bcd] ≤ 4π Da[Bcd],
where D is the Bcd diffusion coefficient and a the binding site length), the (maximal)

mean number of new Bcd molecules that bind to the promoter at time T is given by

4π Da[Bcd]T, according to the von Smoluchowski equation describing the flux of molecules

to an absorbing sphere [34]. Consequently, the minimal noise, n, in estimating this value

is [22]:

n = δC(x)
C(x)

= 1√
4π DaCT

. (6)

With the measured values D = 0.3 μm
2
/sec, a = 3 nm, [Bcd] (at ∼mid-embryo) = 4.8 nM

[19] noise will only be reduced to the required 10% following T ∼30 min averaging, which

appears too high considering the typical times available for the process of pattern formation.

Note that this time constraint would be even more severe (by a factor of 4π) when using the

expression by Gregor et al. [27], who followed the “perfect instrument” analysis by Berg

and Purcell [21].

Pre-steady-state decoding can improve the signal-to-noise ratio in Bcd measurement The

analysis above assumes that the Bcd gradient had reached its steady state at the time of

measurement and is well described by an exponential profile. As a first approach to examine
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whether pre-steady state decoding might be beneficial, we examine the signal-to-noise ratio

prior to steady state. Clearly, before reaching steady state, Bcd levels at every position are

lower, and noise levels are therefore higher. However, at the same time, the shape of the Bcd

concentration profile changes, becoming smoother with time. The sharper decay at earlier

stages increases the effective signal and in principle, this could compensate for the increase

in noise. To examine the balance between these two effects, we calculate rigorously the

signal-to-noise ratio at different time points following the initiation of Bcd translation.

As shown by Bergmann et al. [35], the time-dependent pre-steady-state morphogen

concentration along the A-P axis is given by:

C(x, t) = λs0

2D

[

e− x
λ − e− x

λ

2
er fc

(
2Dt
λ

− x√
4Dt

)

− e x
λ

2
er fc

(
2Dt
λ

+ x√
4Dt

)]

(7)

where s0 is the production rate (at the anterior pole), D is the diffusion coefficient of Bcd in

the cytoplasm, λ = √
Dτ is the steady state decay length and τ the Bcd degradation time.

Figure 2a depicts the concentration of Bcd, C(x,t), as a function of time, for three values of

x. Substituting this profile in (4), we calculate the signal:

s = �C(x, t)
C(x, t)

= �x
λ

· B + A
B − A

(8)

with A ≡ 1 + er fc
(√

t̃ − x̃√
4t̃

)

and B ≡ e2x̃er fc
(√

t̃ + x̃√
4t̃

)

, where we have used the

normalized spatial and temporal variables x̃ ≡ x
λ

and t̃ ≡ D
λ2 t.

We next compare this signal to stochastic noise in Bcd measurement:

signal/noise ∼ �C(x,t)
C(x,t)

/

1√
C(x,t)

= 1√
C(x, t)

∣
∣
∣
∣

∂C(x, t)
∂x

∣
∣
∣
∣
�x (9)

which, after using (7), can be reduced to:

signal/noise ∼ �x
λ

√

s0e−x̃

4λD
· A+ B√

A− B
(10)
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Fig. 2 a Bcd concentration (7) at three different points along the A-P axis: x̃ =0.1, 0.5 and 2.5 (x̃ =0

is the anterior pole), as a function of normalized time t̃. λ and D are set equal to 1, s0 = 100. x̃ and t̃ were

normalized according to: x̃ ≡ x
λ

, t̃ ≡ D
λ2

t . b Signal-to-noise ratio (Eq. (10), arbitrary units; (a.u.)), as a

function of normalized time t̃ for the same three positions as in a. High ratio values correspond to higher

levels of precision. Both plots start from pre-steady-state and reach steady state (0 < t̃ < 20)
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We note that this representation of signal/noise is not an exact description, as the expression

for the noise contains additional parameters (6) that where factored out. Nevertheless, the

expression in (10) provides a qualitative description of the behavior of the signal-to-noise

ratio as a function of space and time.

Evidently, as seen in Fig. 2b, the signal-to-noise ratio reaches a maximum value at some

finite time topt(x). This optimal time varies according to the position on the A-P axis. We

conclude that for any given position along the A-P axis, optimal signal-to-noise ratio is

obtained prior to reaching a steady state, suggesting that pre-steady-state decoding can

improve the accuracy of Bcd measurements, similar to the conclusion reached by recent

studies [35, 36].

Early decoding entails a larger signal due to larger spacing between neighboring nuclei
An additional, and probably more important, contribution of early decoding is the increased

spacing between adjacent nuclei (larger �x). Indeed, as all nuclei reach the periphery of the

embryo at the end of cycle 9 while the embryo does not increase in size, every subsequent

division cycle will increase nuclear density. While larger spacing during early stages will

clearly improve precision in initiating positioning of the gap genes, a key question is

whether this initial pattern will be stabilized during subsequent divisions.

We examined this issue using stochastic simulations based on the Gillespie algorithm

[30, 31]. While this algorithm was initially proposed for simulating a well-mixed reaction

volume, we extended it to the case of spatial-dependent patterning (see Materials and

methods). For simplicity, all simulations assume one-dimensional geometry. An example

for the use of this extended Spatial Gillespie Algorithm (SGA) simulating the formation of

the Bcd gradient is shown in Fig. 3.

Stochastic simulation of a simplified Bcd-Hb system with a fixed number of nuclei We

first consider a single Bcd target gene, Hb, assume a fixed Bcd gradient, and simulate

induction of Hb. To include cooperative effects, we assumed that Bcd can bind to the Hb

promoter at five different sites and that occupied sites increase the probability of additional

binding events. Hb was produced only when all sites were fully occupied. We measured the

variability in Bcd decoding by repeating the simulations with different realizations of the

same stochastic parameters. We then measured the location of the resulting Hb expression

Fig. 3 Formation of a gradient

by the SGA model. The SGA

was tested using the case of

gradient formation in a 1D

system. The gradient forms via

anterior production, diffusion,

and uniform degradation. Natural

log of Bcd molecules is plotted

for the anterior region

(0<x<100; total egg length is

500 μm). Posterior regions were

omitted due to low molecule

copy numbers. A comparison of

the results of the SGA simulation

with analytical prediction

(Materials and methods) is

shown. The simulation result was

linearly fit
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boundary, defined as the anterior-most nucleus in which Hb is reduced to half its maximum.

These simulations were performed for different densities of nuclei. The Bcd gradient was

not changed between the simulations, following the observation that the intracellular level

of Bcd remains constant between division cycles 9 and 14. The results are summarized in

Fig. 4.

Two effects were observed. First, as expected, the embryo-to-embryo variability in Hb

boundary position increases with increasing number (density) of nuclei. For the low-density

case (corresponding to division cycle 9 embryos), 85% of the simulated embryos positioned

the Hb boundary at the same precise position. Higher densities (corresponding to cycles 12

and 14) reduced this number to only 65% and 51.6%, respectively. Second, also as expected,

the actual variation in position of the Hb boundary between embryos (measured in microns)

was larger for low-density nuclei. Clearly, as in most cases the imprecision in boundary

position was restricted to only one nucleus, and the deviation scaled with the inter-nucleus

distance.

Fig. 4 Distribution of the Hb

expression boundary location.

Three different nuclear densities

were simulated: low (a), medium

(b) and high (c) consisting of 26,

51, and 101 nuclei, respectively.

Each nuclear density simulation

was repeated 60 times, from

which distributions were

extracted. Low nuclear density

decoding is more precise

(85% of the cases produce same

boundary location) than high

nuclear density decoding

(51.6% reproducibility), but

accounts for larger errors.

Medium nuclear density is

intermediate with respect

to both of these criteria
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Stochastic simulation of a simplified Bcd-Hb-Kr system with increasing number of nuclei
The key question is how the described variability changes during nuclear proliferation. We

hypothesized that the high percentage of embryos achieving precise boundary definition in

early stages is maintained during the subsequent divisions. We further reasoned that this will

be made possible by the interaction between gap genes themselves, which will introduce

memory into the system and facilitate the initial definition of the gap-gene expression

domains.

To examine these hypotheses, we considered the two gap genes Hb and Krüppel (Kr). In

our simulation, Bcd induces Kr at a higher concentration than that which induces Hb [37–

39]. We captured this characteristic by assigning a lower ‘on’ rate of Bcd to the Kr promoter

compared to the Hb promoter, while maintaining the same cooperative effects. These two

gap genes are further subject to mutual repression, leading to their expression in two distinct

domains [12, 13, 15, 17] (Fig. 5a). This feature was actualized by allowing Hb (Kr) to bind

to the Kr (Hb) promoter and assuming that this binding prevents expression.

We first simulated the system at fixed low and high nuclear densities (26 and 101 nuclei,

analogous to cycles 9 and 14, respectively). Next, we considered a gradual increase in

nuclear density: starting from the initial value of 26 nuclei we doubled the density to 51

nuclei and then again to a final nuclear population of 101 nuclei. Upon each doubling event,

new nuclei were positioned in between existing nuclei. All three cases were simulated for

the same virtual time of 10 min, thereby maintaining equal averaging time.

The stochastic simulation produced the correct pattern of expression: Hb and Kr

were expressed in distinct domains, separated by a sharp boundary, with Kr being more

posterior (Fig. 5b). As before, we measured the embryo-to-embryo variability by repeating

the simulations for different realizations of the same stochastic process. The results are

summarized in Fig. 6. Evidently, increasing the nuclear density in time reproduces the

results of the low-nuclear-density case. While the reproducibility in boundary location

was 36.66% and 38.33% when nuclear density was low and when increased gradually,
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Fig. 5 The Bcd, Hb, and Kr network. a Bcd, Hb, and Kr network interactions that were simulated. Bcd

activates transcription of Hb and Kr. Hb and Kr mutually repress each other. b Expression pattern of the

Bcd gradient and Hb and Kr regions following the network design described in Fig. 5a. Activation of Kr by

Bcd is greater than Hb activation, while Kr repression by Hb is stronger than the reciprocal repression of

Hb by Kr
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Fig. 6 The Hb-Kr expression boundary. a Fraction of cases (out of 60 repeats) that resulted in precise

boundary definition, for three different nuclear densities corresponding to three decoding timings, similar

to those described for the Bcd-Hb system. Cycle 1 is the earliest, consisting of 26 total nuclei, cycle 2 is

intermediate in time and consists of 51 nuclei, and cycle 3 is the latest, consisting of 101 nuclei. As in the Bcd-

Hb system simulation, the earlier the decoding takes place, the more reproducible the boundary definition

is. b–d Distribution of location of the Hb-Kr expression boundary for three different cases of decoding:

low nuclear density (b), high nuclear density (c) and increasing nuclear density (d) decoding. Each nuclear

density simulation was repeated 60 times, from which distributions were extracted. The low nuclear density

and increasing nuclear density cases are very similar in terms of precise boundary location reproducibility

(36.66% and 38.33% of the cases, respectively), while the high nuclear density case is considerably less

reproducible (16.66% of the cases)

respectively, this reproducibility was reduced to 16.66% when patterning was initiated at

high nuclear density. This suggests that indeed, precision in early decoding of the Bcd

gradient can be preserved in later stages by the network of interactions among the gap

genes.

In addition to location, we also analyzed the sharpness of the Hb-Kr boundary by

measuring the level of decrease in Kr molecules between two adjacent nuclei at the

boundary. Low nuclear density and increasing nuclear density cases resulted in a mean

difference of 1,850 and 1,700 Kr molecules, respectively, while the high-density case gave

rise to a difference of just 574 molecules, suggesting that early decoding contributes to the

quality of the boundary that is formed, in addition to its contribution to precision in defining

boundary location.
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4 Conclusions

Decoding of the Bcd morphogen gradient in the Drosophila embryo is performed with

high fidelity. Previous estimates concluded that this precision is difficult to account for,

considering inevitable noise in the estimation of Bcd concentration. Here we argue that

this apparent inconsistency might be resolved, at least partially, if Bcd is decoded at early

stages, prior to nuclear division cycle 14 when gap gene expression domains were typically

measured. The reason for this improved accuracy is not a better estimate of Bcd levels, but

rather the larger distance between the nuclei, which makes them more distinct, therefore

enabling better tolerance of noise levels. Refinement of the initial crude pattern established

in these early stages may proceed while maintaining precision, due to repressing interactions

between the gap genes.

In this study, we modeled the formation of a model boundary, between Hb and Kr stripes,

using stochastic simulation. We have shown that a dense array of nuclei may still assume

a precisely reproduced pattern by utilizing the aforementioned mechanism. Moreover, we

have shown that early gradient decoding more accurately defines the regions of the resulting

pattern, compared to late decoding, by giving rise to sharper boundaries between expression

stripes.
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