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Transcription factors (TFs) rapidly detect
their specific binding sites within large
genomes, supporting cell adaptation to
changing conditions.

Eukaryotic TF DNA binding domains
bind short DNA motifs with low informa-
tion content, leaving open the question
of how rapid and accurate binding site
detection is achieved.

Existing models fall short in addressing
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Transcription factors (TFs) regulate gene expression by binding DNA sequences
recognized by their DNA-binding domains (DBDs). DBD-recognized motifs are
short and highly abundant in genomes. The ability of TFs to bind a specific subset
of motif-containing sites, and to do so rapidly upon activation, is fundamental for
gene expression in all eukaryotes. Despite extensive interest, our understanding
of the TF-target search process is fragmented; although binding specificity and
detection speed are two facets of this same process, trade-offs between them
are rarely addressed. In this opinion article, we discuss potential speed–specificity
trade-offs in the context of existing models. We further discuss the recently de-
scribed ‘distributed specificity’ paradigm, suggesting that intrinsically disordered
regions (IDRs) promote specificity while reducing the TF-target search time.
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Introduction
Cells and organisms adapt to changing requirements by reprogramming gene expression.
Transcription reprogramming depends on transcription factors (TFs), which activate or repress
transcription by binding to specific gene regulatory regions. Consistent with their role in diversifying
cellular functions, the TF repertoire has expanded with increasing organism complexity [1,2]. For
example, the human genome contains approximately threefold more genes than its simple yeast
counterparts, but approximately eightfold more TF-coding genes [2]. This expanded TF repertoire
is translated into a refined control of expression through the tuning of TF binding to specific subsets
of genes.

TFs bind DNA through specialized DNA binding domains (DBDs, see Glossary). DBDs of the
same family bind DNA in a similar manner, exposing a defined subset of amino acids for direct
contact with specific nucleotides. Contrasting the fast evolutionary expansion of the TF repertoire,
the number of DBD families has remained limited [3]. In fact, a large fraction of eukaryotic TFs
belong to just a few families [2]. In budding yeast, for example, >50% of TFs belong to the
zinc-cluster (a total of 57 TFs), C2H2 (41 TFs), and bZip (15 TFs) families [4]. Interestingly, while
DBD families are highly conservedwithin the eukaryote, bacteria, or archaea lineages, there is little
overlap between the different lineages [5,6]; in a survey of 500 genomes, only a small portion of
DBD families were found to be shared among all lineages [1]. The basis of this limited interlineage
conservation remains unclear, as eukaryotic DBDs bind naked DNA and associate with the bac-
terial genome when ectopically expressed.

In this opinion article, we discuss the two mechanisms through which TFs search for their binding
sites within large genomes. We focus on two key properties of this search, which are still poorly
understood: the specificity of the search, namely the ability of a TF to distinguish relevant from
nonrelevant binding positions, and the speed at which binding sites are detected. We argue
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Glossary
1D diffusion: DNA-binding proteins
that slide along the DNA in search of their
actual binding sites.
3D diffusion: random movement of
TFs in 3D space that can lead to
collisions with the DNA.
Base skipping: while sliding along the
DNA, TFs can hop on and off, resulting in
faster scanning at the cost of nucleotide
skipping.
DNA-binding domain (DBD): protein
domain in TFs that allows them to bind
specific DNA sequences. This binding is
facilitated by the formation of direct
bonds between the amino acids
comprising the DBD and the DNA
nucleotides. These domains are highly
conserved in evolution, and TF families
are often classified by them.
Facilitated diffusion: kinetic model
describing the search of TFs for their
genomic targets. According to this
model, TFs can combine 3D diffusion
and 1D sliding along the DNA, to speed
up the search for their binding sites.
Intrinsically disordered regions
(IDRs): protein regions that are not
predicted to form a fixed 3D structure.
Instead, these regions tend to be flexible
and can be found in various orientations.
Such regions are prevalent in TFs.
Molecular recognition features
(MoRFs): short IDRs in proteins that
undergo disorder-to-order transitions
(induced folding) upon binding.
Paralogs: two related genes found in
the same organism that originated from
a single ancestral gene that was
duplicated. Paralogs may preserve their
original function and act similarly or
diverge with time.
Phase-separated condensates:
cellular compartments that are not
surrounded by membrane and which
contain a concentrated mixture of
biopolymers, such as protein and
nucleic acids.
Superenhancers: DNA regions in
mammalian genomes containing groups
of enhancers that are bound by multiple
TFs, promoting the expression of genes
controlling cell identity.
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that trade-offs between these two requirements (specificity and rapid detection) limit possible
search mechanisms. With this view, we discuss the current existing paradigms explaining spec-
ificity, pointing at their advantages but also their possible drawbacks. We then present a new par-
adigm, in which the search process is guided by long intrinsically disordered regions (IDRs)
present outside of the TF DBDs, as suggested by a recent analysis of two budding yeast TFs.
Long IDRs are abundant within eukaryotic TFs. If they do have a role in the TF search process,
these IDRs could explain both the specificity and the speed at which TFs locate their binding
sites within the large eukaryotic genomes.

TF Target Search In Vivo: The Challenge of Binding Specificity
DBDs bind preferentially to specific DNA sequences. Bacterial DBDs recognize sequences that
often have sufficient information content to specify particular genomic addresses while limiting
random appearances [7,8]. Some eukaryotic DBDs similarly recognize motifs of high information
content, as exemplified by the general polymerase III activating factor, TFIIIA (Figure 1A). The
human genome expresses ~800 multiple zinc-finger genes that could potentially encode TFs of
specific targeting, but most of these remain uncharacterized. In fact, well-studied TFs, including
CTCF [9], GLI1 [10], and PRDM9 [11], bind to relatively short motifs, leading to the ‘many fingers
but short motif’ paradox [12]. More generally, systematic mapping of the in vitro binding prefer-
ences of thousands of eukaryotic DBDs revealed that long motifs supporting specific targeting is
the exception rather than the rule [13–15]. For most eukaryotic DBD families, binding motifs
are significantly shorter (5–11 bp) and do not contain enough information to support specific
targeting [5]. This lack of sufficient information is exemplified in budding yeast, arguably the
best characterized eukaryote (Figure 1B,C). Furthermore, at least for some DBD families,
information content appears to decrease with increasing genome size, as exemplified by the
Myb/SANT family [15]. Consistent with their low information content, DBD-recognized motifs are
abundant within the eukaryotic genomes; a typical six-bp motif, for example, appears, on average,
~6000 times in the 107-bp budding yeast genome with no apparent depletion of 6-mers acting as
TF-binding sites (Figure 1D). This number of appearances grows in proportion to the genome size,
becoming prohibitively large in the 109-bp human genome.

DBD-recognized motifs are not only short, but also shared between TFs, most notably close
paralogs or, to a lesser extent, members of the same family [13–15] (Figure 1D–F). For example,
DBDs of the GATA family commonly bind to sequences containing the GATA or GATC consensus;
DBDs of the C2H2 zinc family bind G-rich motifs often containing three or four consecutive guano-
sines; while DBDs of the fungal-like Zn(2)-C6, comprising ~28% of budding yeast TFs, bind close
variations of CGGA-containing motifs.

Therefore, eukaryotic DBD-recognized sequence motifs are of low information content and poor
discriminatory power. What is the relevance of these binding motifs in vivo? Systematic analyses
[16–19] together with myriad specific studies confirmed that TFs localize preferentially at genomic
sites containing their in vitro bound motifs. However, only a small fraction (~1% in mammalian
genomes) of motif-containing sites are bound in actuality [17,20]. Therefore, while DBD-binding
preferences define the sites of potentially stable TF–DNA associations, they fall short in predicting
where in the genome such associations occur.

TF Target Search In Vivo: The Challenge of Rapid Detection
The limited size of binding motifs and their high abundance in genomes challenge not only the
specificity of TF binding, but also the speed by which the relevant genomic binding sites can
be detected within the genome. The rate at which a TF encounters a binding site depends on
the effective interaction volume, corresponding principally to the size of the site. The number of
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Figure 1. Transcription Factor (TF) Binding Motifs Are of Low Information Content and Are Shared between TFs from the Same DNA-Binding Domain
(DBD) Family. (A) Pzf1, a TF with nine C2H2 zinc fingers, binds a high information content motif. (i) The Pzf1 protein, annotations by SMART [134]. (ii) The Pzf1 binding
motif [15]. (iii) Scheme of the Saccharomyces cerevisiae genome. Indicated are the Pzf1 motif positions, appearing only six times in the genome in a 30-kb region of
chromosome 12 containing rDNA genes. (B,C) TF-binding motifs are of low information content. (B) The expected number of genomic addresses of the S. cerevisiae
TFs. (C) The information content of the respective DBDs. Information required for having only one or 100 addresses in the genome is shown by broken lines, following
[5]. TFs are sorted by families and further ordered by binding similarities. (D–F) Binding motifs are not under-represented in the genome and are shared between
multiple TFs from the same family. (D) Shown is the maximal TF position weight matrix (PWM)-based score calculated for each possible 6-mer as a function of the
number of genomic occurrences (see the supplemental information online for more details). The number of TFs with score >1 is indicated by color. 6-mers preferred by
multiple TFs from the same family are marked by shapes. (E) PWM-based motif-binding similarities. TFs are clustered by families, and further ordered based on binding
similarity [order as in (C)]. (F) Motif-binding preferences of the indicated S. cerevisiae GATA TFs. (G) TFs are expressed at low levels. Histogram showing the normalized
mRNA levels of the S. cerevisiae genes. Data from [135].
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competing sites where transient TF trapping occurs also influences the detection rate and can
slow down the search. Considering these challenges, the speed at which activated TFs repro-
gram gene expression is remarkable. For example, budding yeast activates stress-responsive
genes within <5 min of stress exposure [21,22], during which relevant TFs are activated,
translocated to the nucleus, detect their binding sites, and recruit the general transcriptional
machinery. In the Drosophila salivary gland, the TF HSF localizes to its target promoters within
20 s of heat shock [23].

The TF target search has received intense experimental and theoretical attention [24,25]. Early
in vitro experiments reported rapid association of the bacterial lac repressor with its cognate
site, at a rate that is 1000-fold faster than predicted by 3D diffusion and random collision [26].
To explain this accelerated detection, models of facilitated diffusion were proposed, in which
the 3D diffusion is interspaced with intervals of 1D sliding along the DNA [27–30], thus, effectively,
increasing the target size (a so-called ‘antenna effect’) [7,31–34]. Subsequent experiments using
single-molecule tracking confirmed that TFs diffuse along the DNA, albeit at rates slower by 1–2
orders of magnitude than in 3D [24,28,35–40]. Together, these studies established facilitated dif-
fusion as the prevailing framework for analyzing the TF–target search.

Within the facilitated diffusion model, the TF–target search depends on the diffusion rate of the TF
and its residence time on nonspecific DNA. 3D diffusion defines the rate at which the TF asso-
ciates with the DNA, while the nonspecific residence time, coupled with 1D diffusion along
DNA, defines the length of the DNA segments (sliding windows) scanned at each association
event. For a given genome size, these parameters provide an estimate of the overall search
time. Of note, within the model, increasing the 1D sliding intervals could accelerate or, conversely,
slow down the search depending on quantitative parameters: Acceleration results from scanning
a larger sequence window at each association event, while slowdown results from the increase in
residence time at all nonspecific places, most of which do not contain the desired target. Under
common assumptions, the search time is optimal when a TF associates with DNA 50% of the
time [7,41–44]. In specific cases, longer residence time is beneficial, for example, when the 1D
scan allows base skipping [39,40]. Of note, the sliding window may be mechanistically limited
by the difficulty in retaining stable nonspecific DNA associations while moving along the DNA [45].

Single-molecule tracking of the lac repressor in live Escherichia coli verified the role of facilitated
diffusion in vivo. The lac repressor is DNA bound 90% of the time, diffuses along DNA at a rate
of ~0.05 μm2/sec (5×105 bp2/s), and covers a sliding window of ~45 bp at each millisecond-
scale sliding event [36,40]. The measured kinetic parameters well explain the ~5-min search
time of a single lac repressor for a single operator.

Whether facilitated diffusion can also provide the needed acceleration for the TF target search in
the larger, more complex, and chromatin-packed eukaryotic genomes is unclear [7]. If sliding
parameters remain the same as in E. coli (~5-ms residence time), the search time would increase
in proportion to the genome size, becoming prohibitively long in the large mammalian genomes.
Indeed, kinetic parameters measured in living eukaryotic cells correspond, within the same
facilitated diffusion model, to significantly longer search times. This includes the 0.8-s 1D
residence time measured for budding yeast Mbp1, which implies a single Mbp1–single target
detection time of ~5 h [46], and the 0.2–1-s nonspecific residence times described for various
TFs in higher eukaryotes [47–60]. Together with the 105–106 bp2/s (0.01–0.1 μm2/s) 1D diffusion
coefficients [37,61–63], these residence times predict sliding windows of 300–1000 bp
[7,62,64–74], implying a single TF–single site detection time of ~500 h in the 109 base-pair
human genome. Clearly, these estimated times are exceedingly long. Parallel search by multiple
4 Trends in Genetics, Month 2020, Vol. xx, No. xx
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TF molecules would reduce the search time, but whether this multiplicity of factors is capable of
explaining such a rapid search is not clear, particularly when considering the relatively low expres-
sion levels of most specific TFs (Figure 1G).

Beyond the Core DBD-Recognized Motif: Mechanisms Contributing to the TF
Target Search
Sequences Flanking the Core Motif
Considering the theoretical difficulties discussed earlier, the specificity and speed at which
eukaryotic TFs detect their binding targets in vivo is remarkable. An immediate question is
whether the DBD-binding motifs described through the various experimental and computational
analysis are accurate enough. A good model for addressing this question are TF paralogs that
bind highly similar motifs in vitro. While some of the paralogs retained the same binding profile
also in vivo [22], other paralog pairs bind different sets of genes [75–77]. Analysis of DNA
sequences flanking described motifs revealed sequence signatures that could potentially explain
the differential binding preferences of close paralogs [78–87]. If prevalent, such contributions,
missed in conventional analysis, could explain binding specificity.

TF-binding motifs are typically defined by comparing DNA sequences bound by the TF and
detecting the nucleotides with non-zero information content. Even though these analyses do
not consider the structure of the respective DBD, the defined motifs commonly correspond to
the nucleotides making direct contacts with the DBD. Therefore, the core motif size is largely
constrained by the DBD family; for example, a C2H2 zinc finger makes a direct contact with
three bases and, therefore, a double C2H2 DBD will form a maximum of six direct contacts.
The core motif might still be longer if the DBD makes additional interactions with the DNA, inde-
pendent of the zinc-finger structures; exemplifying this are the budding yeast Com2 and the
DrosophilaHox TFs, the DBD-definedmotifs of which are extended by additional A/T nucleotides
that are bound by basic sequence RGRK (Com2) [84] or a disordered region (Hox) [88] proximal
to the DBD. Such contributions are integral parts of the TF-binding sites and could bemissedwith
in vitro assays using isolated DBDs. The contribution of such DBD-independent structures
appears insufficient for explaining the conundrum of binding specificity.

Motif-searching methods, both in vivo and in vitro, may miss contributions of DNA sequences
located away from the core motif [79]. Such contributions were suggested by targeted analysis
that specifically examined DNA sequences outside the core [78–87]. For example, in vitro analysis
of the budding yeast TF Pho4 revealed distantly positioned flanking DNA sequences that affect
binding affinity as much as the core motif itself [81]. How such sequences can contribute to
binding without directly contacting the DBD is less clear. One compelling hypothesis is that
flanking sequences modulate the 1D sliding on DNA and, in this way, increase the effective target
site [79]. However, strong binding to flanking regions could trap the TF and limit its arrival at the
desired target sites in vivo. In addition, the consistency between the in vitro and in vivo prefer-
ences for sequences flanking the core appears low [81], in contrast to the high consistency be-
tween the in vivo and in vitro core-motif preferences.

DNA Accessibility
In addition to their intrinsic DBD preferences, TF binding to DNA in vivo depends on the cellular
environment. In particular, the ability of regulatory factors to access DNA varies along the
chromatin-packed eukaryotic genomes [89]. The wrapping of DNA within nucleosomes may
seclude potential binding sites with regions of heterochromatin being of particularly low accessi-
bility. In terms of the search kinetics, differential DNA accessibility could accelerate the TF target
search by reducing the effective genome size, but might also slow it down by shortening the
Trends in Genetics, Month 2020, Vol. xx, No. xx 5



Trends in Genetics
sliding windows scanned at each association event [7]. Quantitative estimates using measured
parameters of the budding yeast TF Mbp1 suggested that limiting the search to nucleosome-
free regions only would slow down, rather than accelerate, binding site detection [46].

Experimentally, TFs are depleted from nucleosome-associated DNA [17,90–92] (Figure 2A).
However, this depletion is only partial, with some TFs effectively competing with nucleosomes
for DNA binding [93–98]. Furthermore, nucleosome depletion is often the consequence, rather
than the cause, of TF binding [99], making it difficult to discern the contribution of nucleosomes
to binding specificity. Notable also is the depletion of TFs from coding sequences, which may
be due to high nucleosome occupancy, or, in highly expressed genes, to the density of propagating
polymerases (Figure 2B).
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Figure 2. Transcription Factors (TFs) Are Generally Depleted from Nucleosome-Associated DNA and Their Binding Sites Are Rarely Linked to other
TF-Binding Sites. (A) TFs are generally depleted from nucleosome-associated DNA. The Saccharomyces cerevisiae genome was divided into evenly sized bins
(25 bp). (i) Average nucleosome occupancy in these bins, ordered based on the average signal measured by MNase-seq. (ii) Binding signal of the indicated TFs, measured
by chromatin endogenous cleavage (ChEC)-seq [bins are ordered as in (i)]. (B) TFs are generally depleted from coding sequences. Meta-genes showing the average
binding signal detected for the indicated TFs over all S. cerevisiae promoters. Broken line indicates the transcription start site (TSS). Data from [131]. (C) TF-binding sites
are rarely linked together: The number of events in which a motif of the indicated TFs was found in proximity to that of another TF is shown as a function of the number of
such events expected by random (data are presented in log scale, error bars represent standard deviation; see supplemental information online for further details). Color
indicates the PWM similarities of the different factors to that of the indicated TF (same measure as in Figure 1E).
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Cooperative Binding
The limited information content provided by each individual DBD can be increased in vivo by
the formation of multi-TF complexes that preferentially bind to composites of their individual
motifs. Such composite motifs characterize the obligatory dimers basic leucine zipper (bZip)
and basic helix-loop-helix (bHLH) DBD families, although the motifs remain short in these
cases. Longer composite motifs include the budding yeast 31-bp regulatory sequence that
is bound by the TFs Mcm1 and MF alpha-2 upstream of mating genes [100–102] and the
11-bp composite FOX:ETS binding element found in endothelial-specific enhancers in
humans [103]. Therefore, cooperative binding of interacting TFs is a theoretically compelling
solution explaining in vivo binding specificity. However, genomic analyses have not yet pro-
vided evidence of the widespread prevalence of composite motifs (Figure 2C), although
these may be difficult to discern if allowing flexible spacing. Furthermore, regulatory regions
experience rapid motif turnover and rearrangements [104–107] and tolerate shifts in motif
positions or incorporation of new binding sites [104,108,109], contrasting the expected
stringent constraints associated with the co-binding of TFs.

The apparent lack of evolutionary constraints on the orientation, order, and distance between
motifs questions the prevalence of TF co-binding as a principal specificity mechanism. Therefore,
TFs may interact more often following DNA binding. For example, the interaction between the
mammalian TFs Sox2 and Oct4 occurs following Sox2 binding to DNA, and acts to stabilize
this binding [56]. Similarly, cooperation between the budding yeast TFs Mcm1 and Rap1 is
explained by their mutual interaction with the general transcription factor TFIID [110]. More
generally, TFs could cooperate indirectly by displacing nucleosomes [111] or bending the DNA
[112,113] in amanner that promotes TF binding to adjacent sites. Such indirect cooperationmay ex-
plain the increased tendency of some motifs to co-occur in the same promoters [114], the local-
ization of multiple TFs to the same enhancer regions [115–118], and the prevalence of
multiple, single-TF footprints within DNase-hypersensitive regions [18].

Cooperative binding can promote specificity regardless of whether it results from co-binding of
TF complexes or from the independent arrivals of individual TFs. However, the consequences
of such interactions for the TF search speed differ greatly. Co-binding of interacting TFs will
have limited effect on the search kinetics, perhaps slowing it down by reducing diffusion
rates and increasing the number of possible nonspecific genomic traps. Postbinding recruit-
ment could promote specificity and perhaps the detection speed of the recruited TF, but will
leave open the question of how the recruiting TF reaches its position. To promote binding
specificity of all interacting TFs, stable binding would require the interacting TFs to be simulta-
neously present within the same regulatory region. In this case, the search time will greatly
increase, because the probability that two independently searching TFs will reach an adjacent
binding motif within a limited time frame appears exceedingly low, raising the question of
whether postbinding stabilization is a plausible specificity mechanism. Rigorous analysis of
these possible scenarios is needed to resolve their compatibility with the in vivo search
kinetics.

A Role for Long IDRs in the TF Target Search
As discussed earlier, eukaryotic TFs differ from their bacterial counterparts by using DBDs that
bind DNA motifs of low information content. An additional distinctive feature of eukaryotic TFs
is the enrichment of long IDRs outside their DBDs, which, again, is not seen in bacteria or archaea
[119–125] (Figure 3). These IDRs contribute to the formation of phase-separated condensates
[125–128], which concentrate the transcriptional apparatus at specific superenhancers
[129,130]. A recent study explored whether IDRs contribute to TF-target recognition.
Trends in Genetics, Month 2020, Vol. xx, No. xx 7
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Figure 3. Transcription Factors
(TFs) Are Enriched with Intrinsically
Disordered Regions (IDRs). The
number of amino acids comprising the
DNA-binding domains (DBDs) and
IDRs is shown for all Saccharomyces
cerevisiae TFs. TFs are ordered based
on the length of their IDR.
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Msn2 and Yap1 are budding yeast TFs containing >500 amino acid (aa)-long IDRs [131]. Msn2 is
a zinc-finger TF activated by general stresses, while Yap1 is a member of the bZip family activated
in response to oxidative stress. Unexpectedly, it was found that both TFs use their IDRs to recog-
nize their target promoters. A series of observations led to this conclusion. First, it was found that
the DBDs do not account for the in vivo binding specificity, because the subset of motif-
containing sites bound by the DBDs, on their own, were largely different from these bound by
the intact TFs. Conversely, TF mutants that lacked the respective DBDs still localized to most
of the promoters preferred by the intact TFs, although losing the preference for binding at the
DBD-bound motif. This promoter selection was invariant to the deletion of the few structured
regions embedded within the otherwise disordered non-DBD or to deletion of 200-aa segments
spanning the full non-DBD. Furthermore, swapping the non-DBDs between distant orthologs
retained the binding profile, despite little (alignment-based) sequence similarity. Most notably,
gradually shortening the IDRs beyond 200 residues led to a gradual shift in the promoter binding
profile.

These results suggest a novel paradigm, explaining specificity through distributed specificity. In
this paradigm, promoter binding depends on multiple, weak, and partially redundant specificity
determinants distributed throughout an extended IDR. The detection of target sites then follows
a two-step process: the IDR recognizes broad DNA regions, within which the DBD detects its
preferred, short binding motif.

A central question is how IDRs recognize specific genomic loci. One possibility is that IDRs bind
DNA directly, with a preference for specific promoters. Similar to the (short) disordered AT hook
domains that specifically recognize minor-groove A/T-rich DNA [119,132], extended IDRs could
include a multiplicity of peptide motifs, such as the TF prevalent molecular recognition
features (MoRFs), which may recognize specific DNA sequences or geometrical features.
Most notable are MoRFs predicted to form a helical structure upon binding to nucleic acid or protein
partners (α-MoRFs [119,133]). IDRs could also interact with chromatin or be recruited by other
8 Trends in Genetics, Month 2020, Vol. xx, No. xx



Outstanding Questions
What is the contribution of sequences
flanking the core DBD in promoting
TF binding specificity, and what are
the effects on target detection speed?

What is the prevalence and conse-
quences of TF co-binding on the
in vivo TF-target search?

How widespread is the use of IDRs for
promoting binding specificity?

What are the effects of long TF IDRs on
target detection speed?

What is the molecular basis behind
the specific promoter recognition of
TF IDRs?

Trends in Genetics
DNA-binding proteins. The latter proposal, which initially appeared most promising, was tested,
but deletion of known interacting partners of both Msn2 and Yap1 had no detectable effect on
their binding profiles. Furthermore, sequence motifs in IDR-bound promoters that could serve as
binding sites of potential recruiting TFs were searched for, but no evidence for such potential
collaborating DNA binding partners was detected. Further analysis should help define the
molecular basis of IDR-based promoter recognition.

What are the potential consequences of IDR-based promoter recognition on the speed of target-
site detection? We propose that IDR-based promoter recognition limits the search space in large
genomes by increasing the association rate, or residence time at a specific subset of promoters.
In principle, this could occur through two different mechanisms. First, IDRs contribute to the
formation of phase-separated condensates, which also include co-activators and components
of the general transcription machinery [125–130]. If a TF is attracted to such potential conden-
sates, the search for its targets could be accelerated. Alternatively, association with DNA through
long IDRs may allow recognition of broad DNA regions surrounding the core sequence motif,
thereby increasing the effective target size. The local search of the DBD for its preferred motif
may be further facilitated through the flexible IDR, thereby overcoming the difficulty of retaining
a DNA association while sliding along the promoter [45]. Through a similar effect, long IDRs
may resolve the speed–stability paradox limiting the sliding speed in the rough energy landscapes
required for stable binding [7,44]. However, further experiments are required to examine these
potential contributions.

Concluding Remarks
In this opinion article, we discussed two challenges limiting our current understanding of the
eukaryotic transcription logic: the highly specific binding of TFs to a subset of their potential
binding sites in vivo, and the rapid detection of these selected sites within large genomes. Specificity
and detection speed are intimately linked, because both are limited by the low information content
and discriminative power of the DBD-recognized sequence motifs. We argued that mechanisms
proposed for promoting binding specificity should be viewed not only with regards to their ability to
distinguish potential binding sites, but also concerning their impact on the detection speed and
highlighted potential trade-offs between them. Specificity–speed trade-offs appear particularly limiting
within the prevailing model of specificity through cooperative TF binding, calling for a rigorous
theoretical and experimental analysis of the multi-TF target search process. Finally, based on a
recent study of two budding yeast TFs, we presented the hypothesis that long and flexible IDRs,
characterizing a large fraction of eukaryotic TFs, may promote both specificity and high detection
speed. Future experiments will test this new paradigm and define its generality and implications
(see Outstanding Questions).

Supplemental Information
Supplemental information associated with this article can be found online at https://doi.org/10.1016/j.tig.2020.12.001.
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